
Efficient Nonthermal Ion and Electron Acceleration Enabled by the Flux-Rope Kink
Instability in 3D Nonrelativistic Magnetic Reconnection

Qile Zhang ,* Fan Guo , William Daughton , and Hui Li
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Xiaocan Li
Dartmouth College, Hanover, New Hampshire 03755, USA

(Received 10 May 2021; revised 16 August 2021; accepted 10 September 2021; published 28 October 2021)

The relaxation of field-line tension during magnetic reconnection gives rise to a universal Fermi
acceleration process involving the curvature drift of particles. However, the efficiency of this mechanism is
limited by the trapping of energetic particles within flux ropes. Using 3D fully kinetic simulations, we
demonstrate that the flux-rope kink instability leads to strong field-line chaos in weak-guide-field regimes
where the Fermi mechanism is most efficient, thus allowing particles to transport out of flux ropes and
undergo further acceleration. As a consequence, both ions and electrons develop clear power-law energy
spectra that contain a significant fraction of the released energy. The low-energy bounds are determined by
the injection physics, while the high-energy cutoffs are limited only by the system size. These results have
strong relevance to observations of nonthermal particle acceleration in space and astrophysics.
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Introduction.—Within space and astrophysical plasmas,
magnetic fields often develop stressed current sheets that
are susceptible to magnetic reconnection—a process that
rapidly reconfigures the magnetic topology leading to high-
speed flows, plasma heating, and nonthermal particle
acceleration [1]. Understanding this acceleration physics
has immediate applications to the magnetosphere, solar
flares, and various astrophysical problems. Observations
from both the solar corona [2–5] and magnetotail [6,7]
show simultaneous productions of ion and electron
power-law energy distributions extending to high energy
during reconnection, suggesting a common physical origin.
However, the underlying physics remains poorly under-
stood, since researchers have previously failed to produce
these power laws within self-consistent kinetic simulations
in the relevant regime.
On the theoretical front, previous studies have demon-

strated a Fermi-type mechanism within reconnection layers
[8–13], involving the particle curvature drift within the
electric field induced by the large-scale flows. This mecha-
nism, driven by field-line curvature, is efficient for low
guide field (out of the reconnection plane) to reconnection
field ratios bg < 0.5 [11–14] and is enhanced by magnetic-
island interactions within the reconnection layer. However,
in 2D simulations, the efficiency of the Fermi acceleration
is limited by particle trapping within these islands. Several
3D studies have demonstrated that overlapping tearing
islands due to multiple resonance surfaces lead to field-line
chaos [15–18], allowing energetic particles to transport
out of flux ropes and continue acceleration [10,13,19].
However, this mechanism only applies to regimes with

significant guide fields (bg > 0.5) where the efficiency of
the Fermi mechanism is dramatically reduced.
With 3D kinetic simulations, here we demonstrate that,

within the weak-guide-field regime, the flux-rope kink
instability is unstable in the reconnection layer. This
generates strong field-line chaos, allowing energetic
particles to transport out of flux ropes and continue
Fermi acceleration. The field-line chaos is triggered when
flux ropes reach a threshold length for the m ¼ 1 kink
instability. Our 3D simulations exploiting this threshold
reach an unprecedented domain size. For the first time, both
protons and electrons develop clear and sustainable non-
thermal power laws. The nonthermal populations contain a
significant fraction of the released energy, and nonthermal
protons gain ∼2× more energy than nonthermal electrons.
The acceleration processes include an injection followed by
a prolonged Fermi acceleration phase. While the injection
sets low-energy bounds of the power laws that control the
nonthermal energy contents, the high-energy cutoffs keep
growing with system size, indicating that the results can be
extended to macroscopic systems.
Numerical simulations.—We use the vector particle-in-

cell code that solves the Vlasov-Maxwell equations [20].
The 3D simulations start from a force-free layer

B ¼ B0 tanhðz=λÞex þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
0sech

2ðz=λÞ þ B2
g

q
ey with a uni-

form plasma density ni ¼ ne ¼ n0. B0 is the reconnecting
field, Bg is the guide field, and λ is the half-thickness
of the layer, which is set to be one ion inertial length di.
Electrons carry the initial current that satisfies Ampère’s
law. Most simulations have proton-to-electron mass ratio
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mi=me ¼ 25, bg¼Bg=B0¼0.2, and VA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn0mi

p ¼
0.2c, where c is the speed of light. The initial temperature
Ti ¼ Te ¼ 0.01miV2

A so the plasma β based on the recon-
necting field β ¼ 0.02. The grid size is Δx ¼ Δy ¼ Δz ¼
0.0488di, with 150 particles per cell per species. Boundary
conditions are periodic in x and y, and conducting for fields
and reflecting for particles in z. A small long-wavelength
perturbation is included to initiate reconnection. To limit the
influence of periodic boundaries, all simulations terminate
around 1.3 Alfvén crossing time Lx=VA before the accel-
eration stagnates. During this time, ∼1=3 of the upstream
flux is reconnected and thus the influence of the z boundary
condition is minimal. Our simulations are important for
multi-X -line collisionless reconnection and also relevant for
a hierarchy of collisional plasmoids that may develop
kinetic-scale current layers to trigger collisionless recon-
nection [21–24]. A set of simulations have been conducted
to confirm the robustness of the underlying processes for
different guide fields β, domain sizes, and mass ratios. See
Supplemental Material for a summary [25].
Kink instability and threshold for 3D effects.—

Figure 1(a) shows the current density of flux ropes at
Ωcit ¼ 100 in a simulation with Lx × Ly × Lz ¼ 150 ×
12.5 × 62.5d3i [26]. The flux ropes undergo m ¼ 1 kink
instability and its nonlinear evolution tears up the flux
surfaces (also see the video in the Supplemental Material
[25]). For comparison, flux ropes in the simulation with
Ly ¼ 6.25di (same Lx and Lz) do not have such dynamics
[Fig. 1(b) [27] ], although high-harmonic kink modes may
develop. Figures 1(c) and 1(d) show the y-averaged
energetic electron density (1.2 < ε=miV2

A < 2.4) of these
two simulations, overplotted with Poincaré-type plots of
magnetic field lines. Figure 1(c) shows that the kink

instability drives strong field-line chaos mixing up different
flux surfaces while Fig. 1(d), in contrast, is nearly laminar.
The transition into the strong field-line chaos occurs

when Ly reached a threshold Lth, controlled by the criterion
of m ¼ 1 kink disruption, namely, the safety factor at the
edge of flux ropes qc ¼ πbgD=Lth ∼ 1 [28], where D is the
flux-rope diameter. Closer examination finds D ∼ 15di and
Lth ∼ 9.5di, placing the Ly ¼ 12.5di case above the thresh-
old and the other one below it, consistent with the observed
dynamics. This is in contrast to the earlier considered
overlapping oblique tearing modes in the strong-guide-field
regime [15–17]. In the Supplemental Material [25], we
systematically verified this threshold and field-line chaos
driven by the kink instability in the low-guide-field regime
(bg < 0.5).
The field-line chaos leads to particle transport out of flux

ropes and further acceleration in the reconnection layer.
Figure 1(c) also shows energetic electrons spreading out of
flux ropes, whereas in Fig. 1(d) the electrons are effectively
trapped in flux ropes. The chaotic fields can be further
understood by field-line separations, namely, the distances
between field-line pairs with small initial displacements
[29,30]. Figure 2(a) shows the averaged separation of 103

field-line pairs, starting from the center of flux ropes
with D ∼ 15di [e.g., x ∼ 58di in Fig. 1(c) and x ∼ 73di
in Fig. 1(d)] for several simulations with different Ly (the
same Lx and Lz as Fig. 1). Above-threshold cases are far
more chaotic (faster separation) than below-threshold
cases. To better quantify particle transport, we also
trace test-particle electrons with an isotropic initial velocity
V ∼ 3.5VA from centers of the flux ropes [Fig. 2(b)].
Above-threshold cases consistently show stronger transport
leaving the center of flux ropes. To understand the transport

(a)

(c) (d)

(b)

FIG. 1. Current density for simulations with Lx ¼ 150di and different y dimensions (a) Ly ¼ 12.5di and (b) Ly ¼ 6.25di, respectively.
(c),(d) The y-averaged energetic electron density in these two simulations, respectively, overplotted with Poincaré-type plots of magnetic
field lines—traced from x ¼ 0 with their locations in the x–z plane recorded every 6.25di in y and with different colors for different
starting points.
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mechanism, we calculate the displacement assuming
particles just stream along field lines with a parallel speed
Vk ¼ 2VA (root-mean-square value of the test-particle
parallel velocities), which shows a trend similar to the test
particles [Fig. 2(b)]. This suggests that streaming along the
chaotic field lines is an important mechanism for particles
to transport out of flux ropes. Particle transport enabled by
flux-rope kink instability greatly enhances the efficiency of
particle acceleration [Fig. 2(c)]. Above-threshold cases
consistently produce about ∼10 times more energetic
particles (at energies ∼100 times of the initial thermal
energy) than the 2D case, whereas below-threshold cases
only show moderate increase.
Simultaneous nonthermal acceleration of protons

and electrons.—For larger reconnection domains, Lth ∼
πbgD ∼ 0.1πbgLx as D grows with Lx, verified by simu-
lations with different sizes. Our 3D simulations exploiting
this condition extend to an unprecedented reconnection
domain (Lx × Ly × Lz ¼ 300 × 25 × 125d3i ). We discuss
nonthermal acceleration revealed by this simulation.
Figures 3(a) and 3(b) show time evolution of energy

spectra over the whole domain for electrons and protons,
with insets showing the corresponding spectral indices.
Both electrons and protons evolve into clear power laws.
While a smaller simulation (Lx ¼ 150di) shows variable
indices, the largest simulation shows that both electrons and
protons sustain steady indices. Interestingly, protons took
longer to settle into a steady power law (Ωcit ∼ 225), which
has been challenging to achieve in previous simulations.
Because of our simulation parameters, high-energy elec-
trons become mildly relativistic, making their spectra softer
[31,32]. More analysis shows protons and electrons have
the same spectral index in momentum spectra [33]. The
low-energy bounds of the power laws are nearly constant
εle ∼ 0.2miV2

A (electron) and εli ∼ 0.5miV2
A (proton) over

time. Meanwhile, the high-energy cutoffs persistently
increase with longer time and larger domains [Fig. 3(c)],

reaching ∼500 times of the initial thermal energy. This
suggests the nonthermal spectra can extend to much higher
energies in macroscopic systems.
The first-ever proton and electron power laws in kinetic

simulations reveal the properties of the nonthermal com-
ponents in magnetic reconnection. We determine the
reconnected population by subtracting the cold upstream
thermal distribution from the whole distribution. Out of this
population, ∼20% of particles and∼50% of energy for each
species are nonthermal above the low-energy bounds. This
efficiency is consistent with observations during solar flare
reconnection [14,34–36]. Energetic protons gain about
twice as much energy as electrons, likely due to a more
efficient injection process, as we will discuss later.
In contrast, the spectra for below-threshold casesdonot form

clear and sustainable power laws for either species. Therefore,
Ly > Lth also serves as a condition for power-law formation.
We have verified the dependence of Lth on guide fields using
simulations with bg < 0.5 and that the electron and proton
spectra are insensitive to mass ratios in the range 25–100.
Particle acceleration processes.—Figure 3(d) shows the

energy evolution of different generations of ions and
electrons. Particles are selected if their final energies are
above the corresponding low-energy bound and are aver-
aged as one “generation” if the starting time of energization
is within a ΩciΔt ¼ 5 interval. The energy evolution of
each generation suggests that the accelerated particles
experience an injection process followed by a prolonged
Fermi acceleration phase, analogous to the two-stage
acceleration process in relativistic turbulence [37,38].
The low-energy bounds of the power laws are determined
by the injection energy. When cold protons first cross a
reconnection exhaust, they receive an initial kick from the
outflow (Vout ∼ 0.5VA in our simulations, due to low bg
[39,40]) and gain a speed of about 2Vout (with ε ∼ εli),
which boosts their energy for further acceleration. Thus, at
early time (e.g., Ωcit ¼ 75), most protons are bounded by

(a) (b) (c)

FIG. 2. (a) The averaged separation of initially adjacent field lines in the x–z plane traced from the center of flux ropes with D ∼ 15di.
(b) The mean-square displacement in x for test-particle electrons and parallel-streaming particles traced from the cores of the flux ropes.
Test-particle electrons are injected with an initial isotropic velocity ∼3.5VA, while the parallel-streaming particles have a parallel
velocity equal to the test-particles’ root-mean-square parallel velocity. (c) The enhancement of energetic electrons in 3D compared with
a 2D simulation.
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εli in Fig. 3(b), and later acceleration shapes the distribution
into a power law extending to higher energy. We have
confirmed εli ∼ 0.5miV2

A with different simulations of low-
β (≲0.1). On the other hand, electrons are much lighter,
resulting in a less efficient energization process in the
exhaust, where parallel electric fields could be important
[10,37,41–46]. As a result, the electrons’ low-energy bound
εle ∼ 4Tex, where Tex is the electron temperature at the
exhaust (∼0.05miV2

A in this simulation). Note that Tex can
depend on many parameters (β, Bg, etc.), which will be
studied in the future.
The Fermi acceleration process can be elucidated by the

following scaling analysis. Since the Fermi acceleration
rate at typical acceleration regions (exhausts) α≡ _ε=ε ∼
UE · κ ∼ VAxκx and the escape rate from the reconnection
layer τ−1esc ∼ VAx=L, the power-law index [47,48]

p ¼ 1þ ðατescÞ−1 ∼ 1þ VAx=L
VAxκx

¼ 1þ 1

Lκx
; ð1Þ

where UE is the E × B drift speed, κ is the magnetic
field curvature vector, and L is the half length of the recon-
necting current sheet. Using κx ¼ ðb̂ · ∇b̂Þx ∼ b̂z∂zb̂x∼
BzBx=ðB2ΔzÞ, where Δz is the typical length scale of
exhaust field lines in z (related to the scale of flux ropes),
we obtain

p ∼ 1þ Bx

Bz

Δz

L

�
1þ B2

g

B2
x

�
: ð2Þ

α ∼ VAxκx ¼
BzVAxB2

x

BxðB2
x þ B2

gÞΔz
: ð3Þ

Since both Δz and L are proportional to the domain size, in
larger simulations the predicted spectral indices remain
the same. In the acceleration regions (exhausts), taking
B2
g=B2

x ≪ 1, Bz ∼ 0.05Bx, and Δz=L ∼ 0.15 typical during
our simulations, we obtain p ∼ 4, which is comparable to
indices in our simulations. Since flux ropes grow over time,
Δz increases (approximately linearly) and leads to a
decrease in the acceleration rate α ∼ C=t, where C is a
constant. More careful inspection to the time evolution of
Δz suggests C ∼ 0.8 (not shown). We also measure the
acceleration rates directly from simulations as in Li et al.
[13], finding values and dependence on time and simulation
size consistent with the theoretical prediction. From the
acceleration rate above, we obtain particle energy ε ∝ t0.8.
This scaling agrees reasonably well with the growth of
high-energy cutoffs [Fig. 3(c)] and particle energy evolu-
tion [Fig. 3(d)] in the simulation. These demonstrate that
both species are accelerated by Fermi acceleration into
power laws, consistent with the highly correlated ion and
electron acceleration observed in solar flares [5].

(a) (b)

(c) (d)

FIG. 3. Evolution of energy spectra for (a) electrons and (b) protons in the Lx ¼ 300di simulation. The spectral indices of this and a
Lx ¼ 150di simulation are shown in the insets. (c) The high-energy cutoff of the power laws, determined by the energy at which the
spectrum deviates from the fitted power law by 50%. (d) The energization history of different generations of injected particles. The dash-
dotted lines represent the ε ∝ t0.8 scaling in (c) and (d).
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Discussion.—While observations have suggested effi-
cient acceleration of both electrons and ions during non-
relativistic reconnection in solar flares and the magnetotail,
establishing this from first-principle kinetic simulations has
been a long-standing challenge. For the first time, our
simulations produce power-law distributions for both
electrons and protons that contain a significant amount
of released energy, providing a plausible explanation to the
solar flare observations [2–4,34–36]. The p ∼ 4 spectra
obtained in our simulations are consistent with the electron
indices inferred from many x-ray and microwave observa-
tions [4,49], as well as the proton indices from gamma-ray
[3] and solar-energetic-particle observations [50]. For the
September 10, 2017 event observed by numerous instru-
ments, comparison between magnetohydrodynamics
simulations and gyrosynchrotron emission suggests recon-
nection occurred with a weak guide field (bg ∼ 0.3) [51].
Evidence of turbulent reconnection has been presented
[52,53] for this event and the power-law index obtained by
gyrosynchrotron emission is p ∼ 3.5–6.5, broadly consis-
tent with our simulations. Our simulations can also be
compared positively with a well-observed magnetotail
event reported by the Magnetospheric Multiscale
Mission [6,7]. The event shows simultaneous electron
and proton nonthermal acceleration in a broad turbulent
reconnection region over ∼16 Earth radii (∼80di) with a
low upstream β (βe ∼ 0.03), quite similar to our simula-
tions. The observed power-law indices are typically
∼3.3–4.3 for protons and ∼4.2–5.4 for electrons, in agree-
ment with our simulations. The shoulders of the observed
spectra are ∼15 keV (0.2miV2

A) for electrons and ∼40 keV
(0.6miV2

A) for protons, also similar to our simulations.
Moreover, protons are observed to gain more energy than
electrons.
We have demonstrated that flux-rope kink instability

drives strong field-line chaos in 3D reconnection with weak
guide fields, leading to strong particle transport and
acceleration. As a result, both electrons and protons are
accelerated into clear power laws, for which the basic
properties such as efficiency and spectral indices are
controlled by the injection and Fermi acceleration proc-
esses. The formation of the power laws, especially protons,
requires large domain size in the reconnection plane and
long acceleration time, as well as sufficient 3D physics to
capture the flux-rope m ¼ 1 kink instability. This work
uncovers the fundamental processes for initializing and
developing nonthermal ion and electron acceleration in
nonrelativistic magnetic reconnection, with strong impli-
cations to not only heliophysics but also astrophysics, such
as stellar flares and accretion-disk flares [54,55].
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