
Phys. Plasmas 26, 072121 (2019); https://doi.org/10.1063/1.5100737 26, 072121

© 2019 Author(s).

Influence of 3D plasmoid dynamics on
the transition from collisional to kinetic
reconnection 
Cite as: Phys. Plasmas 26, 072121 (2019); https://doi.org/10.1063/1.5100737
Submitted: 19 April 2019 . Accepted: 11 June 2019 . Published Online: 31 July 2019

A. Stanier , W. Daughton , A. Le, X. Li , and R. Bird 

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions
Physics of Plasmas 26, 050601 (2019); https://doi.org/10.1063/1.5091449

Approaching a burning plasma on the NIF
Physics of Plasmas 26, 052704 (2019); https://doi.org/10.1063/1.5087256

Announcement: The 2018 Ronald C. Davidson Award for Plasma Physics
Physics of Plasmas 26, 050201 (2019); https://doi.org/10.1063/1.5109579

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/424330034/x01/AIP/ULVAC_POP_PDF_Jul19/ULVAC_POP_PDF_Jul19.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.5100737
https://aip.scitation.org/topic/collections/featured?SeriesKey=php
https://doi.org/10.1063/1.5100737
https://aip.scitation.org/author/Stanier%2C+A
https://orcid.org/0000-0001-6050-6159
https://aip.scitation.org/author/Daughton%2C+W
https://orcid.org/0000-0003-1051-7559
https://aip.scitation.org/author/le%2C+A
https://aip.scitation.org/author/Li%2C+X
https://orcid.org/0000-0001-5278-8029
https://aip.scitation.org/author/Bird%2C+R
https://orcid.org/0000-0003-1228-498X
https://aip.scitation.org/topic/collections/featured?SeriesKey=php
https://doi.org/10.1063/1.5100737
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5100737
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5100737&domain=aip.scitation.org&date_stamp=2019-07-31
https://aip.scitation.org/doi/10.1063/1.5091449
https://doi.org/10.1063/1.5091449
https://aip.scitation.org/doi/10.1063/1.5087256
https://doi.org/10.1063/1.5087256
https://aip.scitation.org/doi/10.1063/1.5109579
https://doi.org/10.1063/1.5109579


Influence of 3D plasmoid dynamics on the
transition from collisional to kinetic reconnection

Cite as: Phys. Plasmas 26, 072121 (2019); doi: 10.1063/1.5100737
Submitted: 19 April 2019 . Accepted: 11 June 2019 .
Published Online: 31 July 2019

A. Stanier,a) W. Daughton, A. Le, X. Li, and R. Bird

AFFILIATIONS

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

a)Electronic mail: stanier@lanl.gov

ABSTRACT

Within the resistive magnetohydrodynamic model, high-Lundquist number reconnection layers are unstable to the plasmoid instability, lead-
ing to a turbulent evolution where the reconnection rate can be independent of the underlying resistivity. However, the physical relevance of
these results remains questionable for many applications. First, the reconnection electric field is often well above the runaway limit, implying
that collisional resistivity is invalid. Furthermore, both theory and simulations suggest that plasmoid formation may rapidly induce a transi-
tion to kinetic scales, due to the formation of thin current sheets. Here, this problem is studied for the first time using a first-principles kinetic
simulation with a Fokker-Planck collision operator in 3D. The low-b reconnecting current layer thins rapidly due to Joule heating before the
onset of the oblique plasmoid instability. Linear growth rates for standard (ky ¼ 0) tearing modes agree with semicollisional boundary layer
theory, but the angular spectrum of oblique (jkyj > 0) modes is significantly narrower than predicted. In the nonlinear regime, flux-ropes
formed by the instability undergo complex interactions as they are advected and rotated by the reconnection outflow jets, leading to a turbu-
lent state with stochastic magnetic field. In a manner similar to previous 2D results, super-Dreicer fields induce a transition to kinetic recon-
nection in thin current layers that form between flux-ropes. These results may be testable within new laboratory experiments.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5100737

I. INTRODUCTION

Magnetic reconnection is the change in topology of magnetic
field-lines in a highly conducting plasma. The reconnection associated
release of stored magnetic energy into plasma kinetic energy is thought
to be important in solar flares,1,2 planetary magnetospheres,3,4 and
other astrophysical phenomena. In the laboratory, reconnection is
usually associated with sawteeth that can lead to the fast collapse of
core pressure profiles,5–7 but it can also be utilized during tokamak
start-up to obtain desired magnetohydrodynamic equilibrium states.8,9

In these different plasma environments, the regimes of reconnec-
tion can vary depending on the plasma size, collisionality, and the mag-
netic field configuration. Recent efforts10–17 have sought to classify the
different regimes of reconnecting current sheets using a phase diagram
in S–k space, for Lundquist number S � l0 vA LCS=g and normalized
system-size k � L=di. Here, vA is the Alfv�en velocity defined with the
upstream (reconnecting) magnetic field, LCS ¼ L/2 is the current sheet
half-length for a system of size L, g is the Spitzer resistivity, and di is
the relevant ion kinetic scale. In a low-b plasma, with b the ratio of
thermal to magnetic pressures, di � qs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTi þ TeÞmi

p
=ðqiBÞ is the

ion-sound radius defined with the ion/electron temperatures Ti=e, the
magnetic field strength B ¼ jBj, and the ion charge qi and mass mi.

Figure 1 shows an example phase-diagram that is similar to the one
proposed in Ref. 10. Here, the value of Sc � 104 is assumed to be the
critical threshold at which a collisional Sweet-Parker current layer
breaks up due to the plasmoid instability in MHD, although this can
depend in practice on the background fluctuation level in the
system.18,19

A long-standing problem in reconnection theory has been a via-
ble explanation for the fast (S-independent) reconnection rates in solar
flares. The initially promising Petschek model20 invoked a microscopic
value for the current sheet length, LCS � L, with the primary energy
conversion occuring at pairs of slow-mode shocks that bound the
reconnection exhaust. However, an ad hoc localized resistivity
enhancement is necessary to access the solution within resistive
MHD,21,22 and it has not yet been validated with either first-principles
numerical simulations or laboratory experiments (unlike the Sweet-
Parker solution23,24 with LCS� L).

An alternative idea invokes kinetic scales, following the now well
established result from simulations25 and experiments26,27 that recon-
nection becomes fast when the Sweet-Parker current sheet thickness
dSP ¼ S�1=2LCS falls below the ion kinetic scale di. This transition was
historically considered using laminar Sweet-Parker layers, e.g., Ref. 28,
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for which the threshold is the black line as shown in Fig. 1. However,
the Lundquist number in the corona10 S �1013 is vastly above Sc, and it
is now widely recognized that current sheets will become unstable to the
plasmoid instability before the laminar Sweet-Parker layers have time to
form.17–19,29,30 Studies31–34 have found that plasmoid-dominated recon-
nection can be fast in the “Multi X-line collisional” regime of Fig. 1,
which can be modeled with resistive MHD simulations without invok-
ing kinetic scales. However, the applicability of these results to solar
flares remains uncertain for several reasons.

First, the onset of the plasmoid instability may lead to kinetic
scale reconnection more readily than by the thinning of a laminar
Sweet-Parker layer. This idea was first suggested by Shibata and
Tanuma, Ref. 35, who proposed that the plasmoid formation will lead
to the formation of new secondary current sheets, which are also
unstable to plasmoid formation. Applied recursively, this suggests a
hierarchy of sheets and islands, which can form a cascade down to the
ion kinetic scales where collisionless reconnection is triggered. This
basic scenario has been confirmed in 2D using both Hall-MHD36,37 as
well as fully kinetic simulations,24,38 which give the theoretical basis
for the blue line in Fig. 1. Within 3D reconnection layers, plasmoids
are potentially unstable over a broader range of angles and lead to the
formation of flux ropes with considerably more freedom to interact.
Large-scale 3D MHD simulations39–42 indicate that the reconnection
layer becomes turbulent. While new thin current sheets are still pro-
duced, it is less clear how to estimate if this 3D dynamics leads to
kinetic scale reconnection.

Second, it is expected that the electric fields associated with solar
flare reconnection should significantly exceed10,32 the critical Dreicer43

threshold, Eflare � ED ¼ ðmeTeÞ1=2�ei=e, at which fluid models break
down.38,44 These super-Dreicer electric fields may play a role in the
generation of nonthermal distributions of particles that are often
observed during solar flares.45,46

The Facility for Laboratory Reconnection Experiments
(FLARE47) has been designed to tackle these questions, among others.
The maximum S¼ 104–105 and k ¼ 102–103 accessible is small

compared with solar flare values but should be large enough to study
the phase transitions between the different reconnection regimes
shown in Fig. 1. These more modest values are also becoming accessi-
ble for direct numerical simulation using first-principles kinetic
modeling, including the effects of Coulomb collisions.24,38,44 In partic-
ular, Refs. 24 and 38 have studied these phase-transitions with 2D sim-
ulations using the Harris sheet equilibrium in the b � 1 regime. At
these lower values of S, the Sweet-Parker layer is able to form ini-
tially (in contrast to coronal values) but thins due to Joule heating
along with a temperature dependent resistivity. For small systems,
reconnection transitions to the kinetic regime in laminar layers as
dSP thins below di, but for larger layers, this transition is triggered
earlier by the onset of the plasmoid instability (as indicated by the
blue line in Fig. 1).

In the present paper, this transition is considered in 3D for an
initially force-free current sheet in the low-b regime, using a first-
principles kinetic simulation with a Fokker-Planck collision operator.
The low-b regime is relevant for solar flares and magnetic reconnec-
tion experiments in FLARE. Compared with the b � 1 results of
Ref. 38, the low-b current layer is found to thin much more rapidly
from its initial thickness due to Joule heating and reach a significant
Lundquist number S � 104 prior to the plasmoid onset. At the onset,
the plasmoid instability in 3D results in multiple oblique modes that
form at different rational surfaces48,49 and can be stretched19 and
rotated by the reconnection outflow jets.

It is found that the growth rates for the standard (ky � 0) modes
of the instability agree well with the semicollisional predictions50 of
the boundary layer theory for the tearing instability, but the angular
cut-off for the unstable oblique modes is significantly smaller than pre-
dicted. Although the initial conditions are force-free, temperature gra-
dients develop self-consistently due to Joule heating in the initial
phase, and the possibility of diamagnetic stabilization due to these gra-
dients is considered. The temperature gradient stabilization predicted
for the semicollisional drift-tearing mode51 is too small to explain this
effect alone, but there may be additional stabilization due to the break-
down of scale separation between the inner tearing layer thickness and
the outer current sheet.52 In the nonlinear regime, the oblique tearing
modes grow to form flux-ropes that undergo a variety of kink and coa-
lescence processes, while they continue to be rotated by the reconnec-
tion outflows. These interactions lead to a turbulent-like state with
large regions of stochastic magnetic field.

Despite these complications, this simulation suggests that the
transition from collisional to kinetic reconnection can occur in a man-
ner analogous to the 2D picture. Thin current layers form between the
flux-ropes, where super-Dreicer electric fields are supported by colli-
sionless terms in Ohm’s law. These thin current layers can become
unstable to the generation of additional flux-ropes.

This paper is organized as follows: in Sec. II, the initial and
boundary conditions and the numerical parameters for the simulation
are described. In Sec. III, an overview of the different stages of the sim-
ulation is given. These stages are then considered in more detail in
Secs. IV–VI. Section IV describes the thinning of the collisional Sweet-
Parker current layer prior to plasmoid onset. Section V presents an
account of the oblique plasmoid instability and compares with current
theories, with focus on the role of outflow jets in the stretching and
rotation of the oblique modes, the collisionality of the inner tearing
layer, the angular spectrum of the oblique modes, the nonlinear

FIG. 1. Reconnection phase-diagram for Lundquist number S and system-size k
(see the text for definitions). Different regimes of reconnection are delineated by the
labeled (approximate) thresholds with Sc ¼ 104 and kc ¼ 50. The conditions for
the solar corona and the FLARE experiment are marked. The tail of the arrow
shows the initial conditions for the 3D kinetic simulation in this paper, and the head
of the arrow gives the conditions just prior current-sheet breakup (tXci ¼ 88).
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flux-rope processes, and the generation of stochastic magnetic field.
Section VI describes evidence for the transition to kinetic reconnection
in thin current layers that form due to the plasmoid instability. Finally,
a summary of results is given in Sec. VII.

II. SIMULATION SET-UP

The primary simulation in this paper was performed with the
VPIC (Vector Particle-In-Cell) code.53 Unless otherwise specified,
velocities are normalized by the light speed c, frequencies by the elec-
tron plasma frequency xpe0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=�0me

p
, and distances by the

electron skin-depth de0 ¼ c=xpe0. The simulation described in this
paper is initialized with a force-free current sheet in a uniform plasma
of physical number density ni0 ¼ ne0 ¼ n0, and temperature
Ti0 ¼ Te0 ¼ T0, with electrons (ions) of mass me (mi) and charge –e
(e). The initial magnetic field profile is given by

B ¼ Br0tanh z=d0ð Þx̂ þ Br0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2g þ 1� tanh2 z=d0ð Þ

q
ŷ; (1)

where Br0 ¼ 1=ðxpe0=Xce0Þ is the asymptotic reconnecting magnetic
field, bg ¼ 0.6 is the ratio of the guide field to the reconnecting field,
and d0 ¼ 2 di0 is the initial current sheet half-thickness in units of the
ion inertial length di0=de0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
. The initial ratio of the electron

thermal to magnetic pressure based upon the reconnecting field is
be0 ¼ 2l0n0T0=B2

r0 ¼ 0:08, and the ratio of the electron plasma fre-
quency to the gyro-frequency isxpe0=Xce0 ¼ 1 (similar to a solar coro-
nal value). In order to start in a collisional (Sweet-Parker) parameter
regime, a large separation of scales is needed between the current sheet
length and the ion kinetic scales (k >

ffiffiffiffiffi
4S
p

according to Fig. 1). A
reduced ion-to-electron mass ratio of mi=me ¼ 40 is used to make
such simulations tractable.

The domain for the 3D simulation is a box of size ðLx; Ly; LzÞ
¼ ð164; 109:3; 54:7Þ di0 that is periodic in x and y, and has perfect
conducting and particle reflecting boundaries in the z direction. The
spatial grid is ðnx; ny; nzÞ ¼ ð3072; 2048; 1024Þ with 140 particles per
cell for each species (total 1.8� 1012 particles). The time step is
Dtxpe ¼ 0:12 (light wave CFL¼ 0.6).

Both ion and electron Coulomb collisions are studied. These are
modeled using a Monte Carlo treatment of the Fokker-Planck collision
operator.38,54 The initial ratio of the electron-ion collision frequency to
the cyclotron frequency is chosen to be �ei0=Xce0 ¼ 0:04 such that the
plasma is well magnetized. Since collisions are infrequent (xpe0 ¼ Xce0

� �ei0), the collision operator is applied every Dtcoll ¼ 22Dt to reduce
the computational cost. This value was chosen based on numerical
convergence to classical resistive friction55 within the current sheet at
early time—when the plasma is cold, and the requirement to resolve
the collision frequency is the most restrictive.

The initial conditions described above can be understood in the
context of the reconnection phase diagram (Fig. 1). For a low-b force-
free current sheet, the key parameters are the system-size k ¼ L=qs
and the Lundquist number based on the parallel resistivity Sk
¼ LCSvAl0=gk. The latter can be written as Sk ¼ ðLCS=di0Þ=ĝk for
normalized resistivity ĝk ¼ 0:51ð�ei0=Xce0ÞðT0=TeÞ3=2. We follow the
conventions of Ref. 24 to define L ¼ Lx and LCS ¼ Lx=4. At t¼ 0, the
initial conditions above give k0¼ 676 and Sk0 ¼ 2010. This position is
marked in Fig. 1 (bottom) as the tail position of the blue arrow, which
is within the “single X-line collisional” regime and the operating
regime of the FLARE magnetic reconnection experiment.

An additional requirement for collisional reconnection is the
electric field should be less than the Dreicer field Ey=ED < 1. At early
time (see below), the electric field is given by the resistive friction,
Ey ¼ gkjk, where jk is the current at the X-point. It can be shown that

Ey=ED ¼
0:51ffiffiffiffiffiffiffiffiffi

be=2
p

ðd=di0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p ; (2)

where be is defined using the electron temperature and the upstream
field. At t¼ 0, be ¼ be0 and d ¼ d0 to give Ey=ED ¼ 0:2.

A 2D perturbation is applied to the magnetic field to start the
reconnection with dB ¼ r� ðdAy ŷÞ, where

dAy ¼ �
0:0125Br0Lx

p
cos

2pðx � Lx=2Þ
Lx

sin
pðz � Lz=2Þ

Lz
: (3)

III. SIMULATION RESULTS

Figure 2 shows several snapshots of the electron temperature Te
over the course of the simulation. Since electron heat transport is pri-
marily along the magnetic field, Te serves as a useful proxy to visualize
the magnetic topology. In the first snapshot, the Te profile is due to
Joule heating within a quasi-2D current sheet structure that is set up
from the initial magnetic field perturbation. As will be discussed
below, the electron heating leads to current layer thinning until the
layer becomes unstable to the primary plasmoid instability.

The second panel shows this instability in the early nonlinear
phase. The formation of oblique flux-ropes breaks the initial symme-
try, and they exhibit a range of kinking and coalescence processes. In
the third panel, the magnetic flux-ropes produced by this instability
are advected downstream and further thin current layers form. These
can also become unstable to secondary tearing-type instabilities to pro-
duce further flux-ropes as demonstrated in the fourth panel. The dif-
ferent stages of the simulation are discussed in further detail in
Secs. IV–VI.

IV. SINGLE X-LINE COLLISIONAL RECONNECTION
A. Collisional current layer

In order to verify that the current layer is in the collisional regime
in the initial phase of the simulation, and to quantify the applicability
of classical transport theory,55 the parallel component of the electron
momentum balance across the current sheet is considered. The parallel
electron momentum equation (Ohm’s law) is given by

neeEk þ neme
Due
Dt

� �
k
þ $ 	 P

$

e

h i
k ¼ Rek; (4)

where Ek ¼ E 	 b̂, b̂ ¼ B=B, E is the electric field, ue is the electron
bulk velocity, Dt is the total derivative, P

$

e is the electron pressure ten-
sor, and Re is the collisional momentum exchange, which is identically
zero in a collisionless plasma. In the strongly magnetized and collisional
regime, Rek can be computed from the classical transport theory55 as

Rek � neegkjk � 0:71nerkTe; (5)

where the first term is due to the resistive friction, and the second term
is due to the parallel thermal force. To test the closure, all of the terms
in Eqs. (4) and (5) were first averaged over a collision time scale ��1ei .
Then, to further reduce statistical noise, the same terms were spatially
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averaged by integration along magnetic field-lines from an initial line
of seed-points x ¼ x0 as

hReki ¼
1
Ls

ðxf
x0

b̂ xðsÞ½ 
 	 Re xðsÞ½ 
ds; (6)

where the final position x ¼ xf is a distance Ls along the field-line
from x0. Reference 56 has shown that this method of spatial averaging

gives less smearing out of the diffusion regions compared to averaging
along the y-axis when structures do not align with the y-direction,
which is the case after the onset of the oblique plasmoid instability.

Figure 3 shows the parallel force balance at tXci ¼ 60, when the
reconnecting current layer has formed, but prior to plasmoid instabil-
ity growth. Here, x0 ¼ ðLx=2; 0; zÞ for z 2 ½zs � 40; zs þ 40
; zs
¼ Lz=2, and Ls ¼ 40 (de). The term due to collisional momentum
exchange, hReki (gray), is calculated as the residual of the left hand
side of Eq. (4). It balances the term due to the parallel electric field,
hneeEki (orange), and sets the thickness of the electron diffusion
region at this time. The collisional transport closure (red) and the
residual (gray) agree to within 3% at the peak values, suggesting that
classical transport is well founded in this early phase. Within the clo-
sure term, the friction term hneegkjki is dominant over the thermal
force h�0:71nerkTei. However, although the electron inertia (blue)
and electron pressure tensor (green) are small, they are non-negligible
in the center of the current sheet where they balance 20% of the paral-
lel electric field term at the X-point. A possible reason for this is partial
runaway of electrons in the tail of the distribution function, which can
occur even for sub-Dreicer electric fields.57,58

B. Resistive thinning of current layer

To characterize the initial current sheet thinning phase, prior to
the plasmoid instability onset, Fig. 4 shows time traces of
Te=Te0; Sk; k ¼ L=qs; d=qs, and Ey/ED from the simulation (blue).
Since the current sheet in the 3D simulation has symmetry along the
y-direction (first panel in Fig. 2), this 3D data are first reduced to 2D
by averaging in y. The values of Te, Ti, jBj, n and Ey ¼ �@tAy are then
measured at the dominant X-point of the mean-field magnetic flux
profile, and d is the half-thickness of the current layer at the thinnest
point along its length (usually at the dominant X-point). The value of
d is estimated by fitting Eq. (1), such that dðt ¼ 0Þ ¼ d0.

For simplified fluid models with constant plasma resistivity, the
current layer will thin due to the initial perturbation toward a constant
Sweet-Parker thickness dSP0 ¼ S�1=20 LCS for S0 � const. Depending

FIG. 3. Contributions to parallel force balance at tXci ¼ 60, in the initial phase of
the simulation prior to the plasmoid instability onset. Contributions have been aver-
aged in time and along the field-lines—see text for definitions. Quantities are
expressed in ion units, after normalization by n0Br0vA.

FIG. 2. Volume rendering of the electron temperature Te with sample magnetic field
lines (white). Multimedia view: https://doi.org/10.1063/1.5100737.1
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on the Lundquist number and the background noise level, the sheet may
be either stable, or breakup before or after it is formed. In the present
simulations, the plasma transport is determined self-consistently from
the kinetic description of collisions and includes temperature dependent
anisotropic resistivity and thermal friction, viscosity, heat conduction,
and species thermal equilibration. Thus, Sk 6¼ const:, and dSP
¼ S�1=2k LCS can evolve in time. The precise evolution of the thickness
d(t) can, in principle, depend on all of the transport effects mentioned.

To illustrate the most important physics, the same parameters
are computed from a 2D resistive MHD simulation (red) with
corresponding initial conditions, a temperature dependent Spitzer
resistivity,60 which neglects heat conduction and assumes exact tem-
perature equilibration Ti ¼ Te. Here, for the single-fluid model, qs and
ED are not physically meaningful but are computed to normalize
quantities in the same manner as the kinetic simulation. The simplified
MHD model reproduces reasonably well the overall profiles

Te=Te0; Sk, k and d=qs. The kinetic model has a slightly larger Te (and
therefore Sk) than the MHD model, which is attributed to the prefer-
ential Joule heating of electrons while the equilibration time scale
seqXci ¼ ðTe=Te0Þ3=2=ð�ei0=Xce0Þ ¼ 25ðTe=Te0Þ3=2 does not remain
small compared to the time scale of current layer thinning. Despite
this, the temperature ratio remains within a factor of s � Te=Ti ¼ 1:5
at tXci ¼ 60, and s ¼ 2 at tXci ¼ 90. Other noticeable differences
include a slightly larger61 total temperature and thus qs in the MHD
model, and a significantly weaker Ey/ED at late times. To verify that
the thinning observed requires the temperature dependent resistivity,
we performed a similar resistive-MHD simulation with uniform resis-
tivity and found that d is approximately 3 times thicker (not shown) at
tXci ¼ 90. This result demonstrates that the temperature dependent
(Spitzer) resistivity can play an important role in the evolution toward
plasmoid unstable regimes.

With the results described above, it is convenient to parameterize
the thinning via a simplified analytic scaling model that can be used to
plot the trajectory of the thinning phase onto the reconnection phase
diagram. First, based on the simulation data, it is assumed that n, jBj,
and LCS are constants and Ti � Te. With these assumptions, the
phase-diagram coordinates vary only with Te=Te0 as Sk / g�1k
/ ðTe=Te0Þ3=2 and k / q�1s / ðTe=Te0Þ�1=2. Then, the temperature
evolution can be estimated by neglecting heat conduction and viscous
heating (which occurs primarily downstream of the X-point), such that
the temperatures increase solely due to Ohmic heating within the layer

3
2
n0@tðTe þ TiÞ � gkj

2
k: (7)

Finally, it is assumed that the current at the X-point follows a Sweet-

Parker scaling jk / d�1SP / g�1=2k , such that @tTe / g0k, i.e., an electron

temperature that increases linearly in time Te / t. The fractional heat-
ing rate can be estimated based upon the initial current density,38 as
Te=Te0 � 1þ QetXci where

Qe �
4

6 Sd0 be0ðd0=di0Þ
� 0:0425; (8)

with Sd0 ¼ Sk0d0=LCS. It follows that Sk � Sk0ð1 þ QetXciÞ3=2;
k � k0ð1 þ QetXciÞ�1=2; d � d0ð1 þ QetXciÞ�3=4 ðd=qs � d0=

q0ð1þQetXciÞ�5=4Þ, and Ey=ED / ð1þ QetXciÞ1=4.
To compare the simple model against the simulation data, a linear

profile (black dashed line) is fit to Te=Te0 for the kinetic simulation,
which gives a measured value of Qe ¼ 0.034. The dashed lines in the
other panels show predicted time profiles for each quantity using this
measured value of Qe, which give reasonable overall agreement with
the data considering the number of assumptions made. Departures
from these scalings are most noticeable in d/qs at early time, as it takes
some time for Sweet-Parker reconnection to develop from the initial
perturbation, and in Ey/ED at late time where Ey deviates from gkjk due
to finite contributions from the pressure tensor and inertial terms in
the momentum balance as discussed above. These terms, which
become significant during the early nonlinear phase of the plasmoid
instability (see Sec. VI), are not present in the MHDmodel.

The peak values of Te=Te0 and Sk are approximately 2.5 and 6
times larger, respectively, than simulations with similar parameters62

reported in Refs. 38 and 24 for the Harris sheet with b � 1. This fol-
lows from Eq. (8), where the fractional heating rate increases as Qe

/ b�1e0 with other quantities equal.

FIG. 4. Time traces of the electron temperature increase Te/Te0, the Lundquist num-
ber Sk, the ratio of the system-size to the sound radius k ¼ L=qs, the ratio of the
layer thickness to the sound radius d/qs, and the ratio of the electric field to the
Dreicer runaway field Ey/ED in the early phase. Shown for the 3D first-principles
kinetic simulation (blue) and a 2D single-fluid resistive MHD59 simulation (red)
assuming Ti ¼ Te with a temperature dependant Spitzer resistivity. The black
dashed lines show the simple scaling model discussed in the text. The blue vertical
lines show the start of plasmoid instability growth (“linear” phase), and the time the
magnetic islands are comparable to the current layer thickness (“nonlinear” phase).
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V. OBLIQUE PLASMOID INSTABILITY

Figure 5 shows Bz, the reconnected component of the magnetic
field, in a top down view of the z¼ 0 plane at tXci0 ¼ 88. At this time,
which is indicated by the second vertical blue line in Fig. 4, tearing-
type fluctuations in the current density become noticeable over the
background current sheet structure. These fluctuations are visible in
Fig. 5 close to the center of the current layer, where they form at a
range of oblique angles to the y-axis. To more clearly show the angular
distribution of the fluctuations, Fig. 5 inset shows Pðkx; ky; tXci ¼ 88Þ
¼ log10ð

Ð Lz
0 jB̂z ðkx; ky; zÞj2 dzÞ, the power spectrum of the magnetic

energy density in kx � ky space, and integrated over the height of the
simulation box Lz. Here, the peak values at ky ¼ 0 and kxde < 0:1 are
partly associated with the background reconnecting current sheet
structure, but there is significant power across a range of oblique
modes with h ¼ arctan ðky=kxÞ�30�.

A full analysis of the plasmoid instability requires accounting for
the detailed plasma physics of the inner tearing layer,50,63–65 the evolu-
tion of the background current profiles during the current sheet thin-
ning process18,29,30 [d ¼ d(t)], and the role of outflow jets in the
advection and stretching of weakly growing modes.19 The full analysis
is not given here, but the relative importance of each of these is exam-
ined in this section from the simulation data upon comparing with
current theories. In particular, we quantify the importance of plasma
collisions in the inner tearing layer and investigate the physics respon-
sible for the maximum cutoff angle hcutoff � 30� observed.

A. Mode stretching and rotation by outflow jets

The multimedia view of Fig. 5 shows the time evolution of the
power spectrum Pðkx; ky; tÞ, with frames every 2X�1ci from tXci ¼ 0 to
tXci¼ 140. As well as the growth of the oblique modes, there is nota-
ble advection of these modes toward kx¼ 0 due to mode stretching by
the reconnection outflow jets. Figure 6 (top panel) shows a slice of the

power spectrum in the kx–t plane for tXci 2 ½50; 140
 at constant
kyLy ¼ 2p (kyde ¼ 0:0091), where the background 2D current sheet
profile with ky¼ 0 is not visible. The oblique modes are initially visible
at tXci ¼ 70 where they are slowly advected toward kx ¼ 0. Huang,
Comisso, and Bhattacharjee, Ref. 19, have studied this effect in
detail with 2D resistive MHD simulations (without oblique modes)
and generalized a model of the plasmoid instability in time evolv-
ing current sheets by Comisso et al. in Ref. 18 to account for this
physics. In the model, the modes are assumed to be advected in the
kx-direction as dtkx ¼ �kxv0x such that they follow characteristic
trajectories

kx ¼ kx0e
�v0x t : (9)

Here, kx0 is the initial component of the wavenumber in the x-direc-
tion, and v0x is the gradient of the outflow jet velocity v0x � vx;max=LCS
for maximum outflow velocity vx;max and current sheet length LCS.
Two of these trajectories are plotted as the magenta and black curves
in Fig. 6 (top panel), where vx;max � 0:5vA and LCS � Lx=4 ¼ 41di
are assumed constant in time. The curves follow the visible mode
stretching reasonably well.

Since there are no outflow jets in the y-direction, the modes remain
with approximately constant ky � ky0 (the multimedia view of Fig. 5).
An interesting consequence of this in 3D is that oblique modes rotate
toward larger oblique angles due to the shear of the outflow jets. Using

FIG. 5. Reconnected component of the magnetic field Bzðx; y; z ¼ Lz=2Þ at
tXci0 ¼ 88. The angles of tearing fluctuations with respect to the y-axis are indi-
cated by labeled red lines. Inset: 2D Fourier spectrum, Pðkx ; ky ; tXci ¼ 88Þ. The
labeled white lines mark angles h ¼ 630�. Multimedia view: https://doi.org/
10.1063/1.5100737.2

FIG. 6. Top panel: Power spectrum of modes Pðkx ; kyLy ¼ 2p; tÞ in the kx � t
plane for tXci 2 ½50; 140
. The black and magenta dotted lines show two sample
trajectories kxðtÞ from Eq. (9). Middle panel: Growth rates ceff=Xci along the two
characteristic trajectories calculated as in Eq. (12). Bottom panel: Power spectrum
of modes Pðkx ; ky ; tÞ in the h–t plane for constant kde ¼ 0.133. The white dash-
dotted lines show sample trajectories from Eq. (10), and the vertical dashed red
and green lines show sample times at which the growth rates are compared with
boundary layer theory in Fig. 7.
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Eq. (9), kx in the definition of the oblique angle h ¼ arctanðky=kxÞ gives
the rotation as

h ¼ arctan tan ðh0Þ exp ðv0xtÞ
� �

; (10)

where h0 ¼ arctanðky0=kx0Þ. Figure 6 (bottom panel) shows a slice of
the mode spectrum in the h–t plane for constant kde ¼ 0.133. There is
a slow but observable advection toward larger jhj, where the white
dash-dotted lines show two sample trajectories in h – t from Eq. (10).

B. Collisionality of inner tearing layer

The role of collisionality in the inner tearing layer depends on the
relative magnitudes of the mode frequency jxr þ icj and the collision
frequency �ei. The real frequency xr can be nonzero in the presence of
temperature or density gradients across the rational surface, and we
will discuss this further below. Following Ref. 19, the power in each
fourier mode can be modeled as

djB̂z ðkx; ky; tÞj2

dt
¼ 2cðtÞ � v0x
� �

jB̂z ðkx; ky; tÞj2; (11)

where dt ¼ @t � kxv0x@kx is the derivative along the characteristics,
and the growth rate cðtÞ ¼ cðdðtÞ; kxðtÞÞ depends upon the instanta-
neous current sheet thickness d(t).18 Modes only grow when the
growth-rate is large enough to overcome the mode stretching,19

cðtÞ > v0x=2. Rearranging this for the growth rate gives

cðtÞ ¼ 1
2
d ln jB̂z j2
� �

dt
þ v0x=2 � ceff ðtÞ þ v0x=2: (12)

Figure 6 (middle panel) shows ceff ðtÞ=Xci calculated along the two
curves in kx � t from the top panel using the data Pðkx; kyLy ¼ 2p; tÞ.
Here, we have filtered the signal to remove high frequency waves while
well preserving the time (zero phase delay) and peak magnitude of ceff .
At tXci ¼ 70, both curves have ceff=Xci � 0:05, which is already signifi-
cantly larger than v0x=2Xci � 0:006. At and after this time, the mode
stretching is not a substantial effect and is neglected in the rest of the
discussion on the linear growth with the assumption that cðtÞ � ceff ðtÞ.

To estimate the importance of collisions, c=Xci can be compared
with the electron-ion collision frequency �ei=Xci � ð�0ei=X0

ceÞðmi=meÞ
ðTe=Te0Þ�3=2 ¼ 1:6 ðTe=Te0Þ�3=2. At tXci ¼ 70; Te=Te0 ¼ 3:3
(Fig. 4) such that �ei=Xci � 0:26 is approximately 5 times larger than
c=Xci as given in Fig. 6 at this time. At a later time, tXci ¼ 82; Te=Te0

¼ 3:8, and �ei=Xci � 0:21 are comparable to the instantaneous c=Xci

of the two curves. We now proceed to compare the measured growth
rates with those predicted from linear boundary layer theory in more
detail.

C. Comparison with semicollisional theory

Depending on the plasma collisionality, different asymptotic
regimes of the tearing instability have been derived in the literature. In
the collisionless (CLS) regime, electrons within a channel of thickness
DCLS from the rational surface zs (jz � zsj < DCLS) are freely acceler-
ated along the field-lines by the induced electric field of the mode. For
jz � zsj � DCLS the Doppler frequency becomes larger than the mode
frequency, xd � kkvTe � jxj, and the electrons experience an alter-
nating electric field that significantly reduces the current response. The
thickness of the channel DCLS is found at jz � zsj ¼ DCLS where
jxj ¼ xd . Using kk � kðz � zsÞ=Ls, for a magnetic shear length Ls
(defined below), it gives

DCLS ¼
jxjLs
kvTe

: (13)

A growth rate for this regime is derived in Ref. 50, under the assump-
tion of cold ions, as

cCLS ¼
kvTed2eD

0

2
ffiffiffi
p
p

Ls
: (14)

Here, D0 is the parameter used to match asymptotic solutions from the
outer ideal region jz � zsj � d� DCLS to the inner region
jz � zsj � DCLS. D

0 is assumed small in the derivation of Eq. (14).
In this section, it is assumed that the outer region is described by

a 1D force-free profile. This is not strictly true for t> 0, as reconnected
(Bz) field develops within the current sheet during the initial Sweet-
Parker phase giving a weakly 2D profile,66 and the profile deviates
from a force-free one due to Joule heating. Despite this, we find that
profiles of the form of Eq. (1) fit reasonably well with the magnetic
field data at x ¼ Lx/2 for a fitting parameter d(t). We thus consider
below the role of temperature gradients only in the inner region.
Equation (1) gives49,67,68

D0 ¼ 2
d

1
kd

1þ b2g tan
2h

	 

� kd

� �
; (15)

FIG. 7. Top panel: Dotted lines show measured growth rates ceffðhÞ=Xci at fixed
kde ¼ 0:133 for tXci ¼ 70 (red) and tXci ¼ 82 (green). Solid lines show the predic-
tions for the semicollisional tearing mode from Eq. (19). Middle panel: The asymp-
totic matching parameter D0 from Eq. (15) divided by the critical value for marginal
stability from the boundary layer theory, D0crit in Eq. (A3), for the drift tearing mode
on a logarithmic scale. Bottom panel: The ratio of the inner layer thickness D to the
outer ideal region thickness d on a logarithmic scale. Here, D is calculated from
Eqs. (18) for modes with h < 20� (solid lines) and with Eq. (20) for modes with
h > 20� (dotted lines).
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Ls ¼
k

k0kðzsÞ
¼

d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2g

q
cos h 1� b2g tan

2h
	 
 ; (16)

and

zs ¼ �darctanh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2g

q
sin ðhÞ

� �
: (17)

As discussed above, �ei � c for the early phase of the instability,
and thus, it is necessary to include the effects of collisions. In the semi-
collisional regime (�ei � jxj; DSC � qs), the thickness of the current
channel jz � zsj ¼ DSC is found when the mode frequency is balanced
by collisional diffusion of electrons along field-lines,50 jxj ¼ k2kv

2
Te=

�ei. The inner layer is thus broadened by collisions as

DSC ¼ DCLSð�ei=jxjÞ1=2: (18)

In Ref. 50, closed form expressions for the growth rate have also been
derived in this semicollisional regime under the assumptions of cold
ions, small D0, and for weak density and temperature gradients. The
growth rate is modified as69

cSC ¼
3p1=4

4Cð11=4Þ

" #2=3
c2=3CLS �

1=3
ei : (19)

Figure 7 (top panel) shows the measured growth rates cðhÞ=
Xci ðc ¼ ceff Þ for fixed kde ¼ 0.133 at tXci ¼ 70 (red dots) and tXci

¼ 82 (green dots), where these times are indicated by vertical lines in
Fig. 6 (bottom panel). These are not the fastest growing modes in the
simulation, but for kde ¼ 0:133, the small-D0 theory is appropriate
(D0q1=2

s D1=2
SC < 1).70 In addition to the time filtering mentioned above,

we have taken the mean of the positive and negative h values to better
compare with the theory. The solid lines show the predicted growth
rate cSC from Eq. (19), where the collision term �ei is evaluated based
on the local electron temperature TeðzÞ at the rational surface
z ¼ zsðhÞ.

Despite the assumptions that have been made in Eqs. (15)–(19),
namely that the profile remains a 1D force-free layer with cold ions,
there is fairly good agreement for h < 20� between the measured
growth rates and Eq. (19). It should also be noted that c=�ei � 1 at
tXci ¼ 82 which is not strictly in the regime of validity for the semi-
collsional mode (�ei � c).

References 16 and 71 have argued that the onset of the plasmoid
instability can occur earlier in the semicollisional regime (DSC � qs)
than the resistive-MHD regime (D� qs), due to faster tearing mode
growth rates. The precise threshold for the onset in the semicollisional
regime is not considered here, but we note that the onset occurs at a
later time (tXci � 140) in the 2D resistive-MHD simulation of Fig. 4
than the kinetic simulation, despite the addition of a continuous ran-
dom noise forcing term to the MHD velocity fields with amplitude
larger than the Particle-In-Cell (PIC) simulation noise level.

D. Stabilization of oblique modes

Although there is good agreement for the modes with h < 20�,
there is clear disagreement between Eq. (19) and the measured growth

rates for h � 20�. For bg ¼ 0.6, Eq. (19) predicts stabilization for
h ¼ 59� when Ls !1 and zs ! 61. The angle h ¼ 59� is simply
half the shear angle the magnetic field makes as it rotates across the
current sheet and is thus set by the background magnetic profile of the
outer region. In contrast, the measured growth rates are stabilized for
h � 35�, at which the rational surface zs ¼ 60:81d is still within the
current layer. This suggests there is some additional stabilization
mechanism associated with the inner region. A possible explanation
for the discrepancy, which will be presently considered, is the diamag-
netic stabilization of oblique modes due to temperature and/or density
gradients.52,65,72 Such diamagnetic flows do not exist in the force-free
initial conditions but become finite over time. Here, we consider only
electron temperature gradients, which arise mainly due to the Joule
heating, as we find density gradients and ion temperature gradients to
be significantly smaller.

The diamagnetic frequency due to gradients in Te is given by
xT ¼ kTe=ðeBLTÞ, where LT ¼ 1=j@z ln ðTeÞj. For the standard tear-
ing modes (h ¼ 0), @zTe � 0 due to the symmetry of the current layer,
but xT 6¼ 0 for oblique modes. The marginal stability threshold for
standard tearing modes (D0 � 0) is then increased to D0 � D0crit for
both collisionless64,65,73 and semicollisional51,65,72 drift-tearing modes.
For the semicollisional case, in Ref. 72, it is found that D0crit � b̂T=qse
for the cold ion limit, where bT ¼ ðbe=2ÞL2s =L2T . In Ref. 65, it is gener-
alized to include the effects of finite ion orbits in the regime with
DT=qi � 1, where qi is the ion Larmor radius, and

DT ¼ ð�eixTÞ1=2Ls=ðkvTeÞ (20)

is the semicollisional inner layer thickness (18) withx ¼ xT . The crit-
ical value D0crit � ðb̂T=qiÞ ln ðqi=DTÞ. The full definition of D0crit that is
used here to test for diamagnetic stabilization is given in Appendix A,
which is derived following Ref. 51 for electron temperature gradients
only.74

Figure 7 (middle panel) shows the ratio of D0, from Eq. (15), to
D0crit, from Eq. (A3), on a logarithmic scale. This ratio is not plotted for
h < 20�, for which c > xT and the strong drift assumption breaks
down. The ratio of D0=D0crit decreases with the increasing h values.
However, the precise threshold for stabilization (D0 ¼ D0crit) only
occurs for h ¼ 55� at tXci ¼ 70 and h ¼ 57� at tXci ¼ 82. At
h ¼ 35�, where stabilization is observed, this predicted threshold from
the boundary layer theory is 13� smaller for tXci ¼ 70 and
30� smaller for tXci¼ 82.

A similar disagreement between the predictions of boundary
layer theory and the measured growth rates of oblique modes has
been found previously for the Harris current sheet.48 In such an
equilibrium, diamagnetic drifts occur only due to density gradients
as the temperatures are uniform. In Ref. 52, this discrepancy was
studied in detail for the collisionless case, concluding that the sta-
bilization is indeed due to electron diamagnetic drift. However, the
stabilization was found to be enhanced with respect to boundary
layer theory predictions when the inner tearing layer thickness,
DCLS, and the outer ideal region thickness, d, have insufficient scale
separation such that the assumptions of boundary layer theory
break down.

Figure 7 (bottom panel) shows the ratio of the inner (D) to outer
region thickness (d) for the two times on a logarithmic scale. For
modes with h < 20�, we use DSC from Eq. (18) for the inner layer
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thickness, with x ¼ ic from the measured growth rates. For the obli-
que modes with h � 20�, we take it to be DT (x ¼ xT) from Eq. (20).
The scale separation between the inner and outer regions is reduced
for large oblique angles in a similar manner as seen for the Harris sheet
in Fig. 8 of Ref. 53. At h ¼ 35�, where stability is observed, D=d � 0:1.
Although this may seem sufficiently small, similar values in Fig. 8 of
Ref. 52 were large enough to significantly reduce the cut-off angle for
oblique modes in the Harris sheet.

The precise reason for the smaller cut-off angle observed here
remains an open question. It is conceivable that the combination of
electron temperature gradients and breakdown of boundary layer the-
ory could account for this, but further study is required to confirm or
reject this explanation. It is significant that two studies67,68 of collision-
less oblique tearing modes in a 1D force-free equilibrium (without
temperature gradients) do not find any additional stabilization of

oblique modes, as the cut-off angle agrees with the predictions of Eq.
(14). Interestingly in Refs. 67 and 68, it was reported that the growth
rates of oblique modes were larger than those predicted by boundary
layer theory (and even the h ¼ 0 modes) for a range of strong guide
fields.

E. Nonlinear phase

For the linear regime of the plasmoid instability, it is shown in
Fig. 7 (top panel) that the fastest growing modes have small oblique
angles (h < 20�), and that that highly oblique modes with h > 35� are
stabilized. This reduction in the angular distribution of fluctuations
may lead one to consider that 2D simulations, which include only the
h ¼ 0 modes, may capture the main aspects of this 3D simulation.

FIG. 8. Poincar�e plots showing the inter-
section of magnetic field-lines with the
y ¼ Ly=2 surface at tXci ¼ 88 (first
panel), tXci ¼ 132 (second panel) and
tXci ¼ 396 (third panel). Field-lines are
traced 1000 times through the simulation
domain (based on Lx) using a volume pre-
serving integration scheme.76 The fourth
panel shows the exponentiation factor r
at tXci ¼ 396, calculated by tracing field-
lines a distance Ls ¼ Ly=2 from a plane
of seed points at y ¼ Ly=2. Also shown
in the third panel, fourth panel is a red
contour of the electron temperature with
Te=Te0 ¼ 1:15.
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However, as described in this section, the angular range of fluctuations
increases in the nonlinear regime.

Figure 6 (the bottom panel) shows the angular distribution of
fluctuations (at kde ¼ 0.133) also for the nonlinear regime of the plas-
moid instability, for 88�tXci 
 140, which is approximately between
the first and second snapshots shown in Fig. 2. Over this interval, the
trajectories of the white dashed curves in h–t from Eq. (10) continue
to follow the peak values of the fluctuation spectrum, indicating that
the mode rotation continues into the nonlinear regime while the flux-
ropes are not large enough to disrupt the mean properties of the out-
flow jets. However, beginning at tXci � 110, significant power in
Pðkx; ky; tÞ appears at larger oblique angles than can be expected from
mode rotation alone.

The flux-ropes shown in the second panel of Fig. 2 show signa-
tures of secondary instabilities. First, on the left side of the domain, at
x � Lx=3, there is evidence of partial coalescence between neighboring
flux-ropes: two flux-ropes visible at the y¼ 0 boundary merge into a
single flux-rope at y � Ly=2. Second, the flux-ropes show signatures
of the kink instability. This is most evident for the flux-rope that forms
very close to the flow stagnation point at x¼ Lx/2 and is not monoton-
ically advected downstream by the outflow jets (Fig. 2, Multimedia
view). The safety factor qðrÞ ¼ 2prBy=ðLyBhÞ was checked for this
flux-rope at tXci ¼ 110 (not shown), soon after it formed, where r is
the radial distance from the flux-rope center and BhðrÞ, the poloidal
field. For an isolated flux-rope with periodic boundaries, the condition
for instability75 requires q(a) < 1 where r¼ a is the edge of the flux-
rope. It is found that q(a) ¼ 0.6 at the flux-rope edge (which is taken
to be the position of the maximum value of Bh). Moreover, the kinking
of the flux-rope that is visible at tXci ¼ 132 interacts with the recon-
nection outflow jets and leads to further rotation of the flux-rope as
can be seen at times tXci ¼ 240, 320. This flux-rope grows via recon-
nection at current sheets on either side to become a “monster”
flux-rope16 with diameter as large as � Lz/3 (18di0) by the end of the
simulation at tXci¼ 400.

It should be noted that although secondary flux-ropes are
observed at late times (e.g., tXci ¼ 320), there are relatively few com-
pared with those forming along thin separatrix current layers in the
3D collisionless simulations of Ref. 48. The separatrix current layers in
the present simulation appear less intense than those in Ref. 48, pre-
sumably due to collisional broadening.

F. Stochastic magnetic field and heat transport

In 3D, the formation of oblique plasmoids at multiple resonant
surfaces can lead to the breakdown of magnetic surfaces. Since plasma
transport is primarily along the magnetic field, the mixing of magnetic
field-lines can lead to enhanced plasma mixing. In light of the above
discussion on the stabilization of strongly oblique modes in the linear
regime and on the secondary instabilities in the nonlinear regime, it is
useful to briefly characterize the extent of any stochastic magnetic field
regions and their role in plasma transport.

Figure 8 (top three panels) shows Poincar�e surfaces of section
with magnetic field-lines for different times during the simulation.
Here, the field-lines are integrated a distance of 1000Lx through the
simulation domain, crossing through the periodic boundaries in the x
and y-directions, and the surface of section is the plane at y¼ Ly/2. To
reliably integrate the field-lines over such a distance, we use a volume
preserving method76 that ensures r 	 B ¼ 0 to numerical round-off

and has been shown to well reproduce boundaries between domains
of ordered and stochastic magnetic field.77

Figure 8 (top) shows a Poincar�e section at tXci ¼ 88, which is at
the start of the nonlinear phase of the oblique plasmoid instability. As
well as the upstream reconnected flux, there are clearly visible mag-
netic flux-surfaces in the downstream region showing a magnetic
island. This island is seeded in the single mode perturbation of Eq. (3)
and remains stable as it grows due to the quasi-2D nature of the
Sweet-Parker reconnection. In between the upstream and downstream
flux-surfaces, there is a thin region of stochastic magnetic field caused
by the overlap of oblique magnetic flux-ropes. At the later times of
tXci ¼ 132 (second panel) and tXci ¼ 396 (third panel), the size of the
stochastic region increases until it fills a significant part of the simula-
tion volume at saturation. Within this middle volume, there is no indi-
cation of any structure, suggesting that the “flux-ropes” that are visible
in Fig. 2 do not confine magnetic field-lines over such large distances.

To compare the regions of magnetic field mixing with plasma
mixing, we consider the electron temperature Te. The red contour in
Fig. 8 is Te/Te0 ¼ 1.15, just above the background value. Although this
contour covers a significant part of the stochastic region, there are
clear regions where the magnetic field is stochastic outside of this con-
tour (choosing lower threshold values for the contour do not give bet-
ter agreement). This result is similar to the test-particle study of Ref.
78, where the electron mixing region was found to be somewhat
smaller than the stochastic magnetic field region.

In the present simulation, where the plasma and fields are self-
consistently coupled, the finite electron velocity may limit the spread
of electrons along the full volume of the stochastic region. To test this,
we plot the magnetic field line exponentiation factor r, which mea-
sures the exponential rate of separation of neighboring magnetic field-
lines.56,79,80 It is defined as

r ¼ ln ðq1=2
maxÞ; (21)

where qmax is the maximum eigenvalue of the Cauchy-Green deforma-
tion tensor ðrx0xf Þðrx0xf Þ

T of the field-line mapping x0 ! xf ðx0Þ.
Here, x0 are taken to be an array of seed points in the y ¼ Ly=2 surface,
and xf are the final positions after integrating a distance Ls ¼ Ly=2
along the magnetic field-lines. The exponentiation factor is similar to
the squashing degree Q, used to define quasiseparatrix layers,81,82 and
the finite time Lyapunov exponent often used to characterize fluid
flows.

Figure 8 shows that the region of significant r agrees more closely
with the electron temperature contour than the stochastic region
shown in the Poincar�e plot. The maximum r ¼ 6.7 at this time. We
also find that the agreement between the Te contour and the region of
significant r is fairly close for most of the simulation (not shown),
apart from at early time where there is rapid change in Te due to Joule
heating in the current layer. This suggests that the snapshots of Te in
Fig. 2 trace out the magnetic topology to a reasonable degree, but due
to the finite electron velocity, they do not explore the whole stochastic
region instantly.

VI. TRANSITION TO KINETIC RECONNECTION

The transition from collisional to kinetic reconnection has been
previously studied using 2D first-principles simulations in Refs. 24,38,
and 44. When the current layer thickness falls below the ion kinetic
scale (either by thinning of laminar layers or by new layers forming
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between magnetic islands due to the plasmoid instability), the recon-
nection electric field is observed to become larger than the critical
Dreicer threshold ED. This triggers rapid thinning of the current layer
until it reaches electron kinetic scales (�2de).24 As this occurs, resistive
friction is no longer sufficient to balance the electric field, and it is
instead supported by gradients in the off diagonal elements in the elec-
tron pressure tensor at the X-point location.44 The previous studies
report these results for measurements taken at a single point in
space—the primary X-point of the 2D reconnection layer. In this sec-
tion, the physics of this transition is examined for the current simula-
tion, with focus on the 3D spatial locations where signatures of kinetic
reconnection occur.

Figure 9 (top) shows an isovolume of Ek=ED � 1 (purple), the
the ratio of the parallel electric field to the critical Dreicer field at tXci

¼ 132. The magnetic surfaces are indicated by a contour of Te
(orange), which shows the flux-ropes have grown large enough to
breakup the primary current layer. Intense current-layers that form
between the flux-ropes are found to reach thicknesses on the electron

kinetic scale d � 1.5de (not shown), in agreement with the findings of
the previous 2D studies. The spatial locations of the super-Dreicer par-
allel electric fields are in good agreement with the locations of these
thin current layers and reach values as large as Ek=ED ¼ 5.

The bottom panel of Fig. 9 shows an isovolume of the electron
pressure agyrotropy with A/e � 0:08 (green). This agyrotropy is a
scalar measure of the departure of the pressure tensor from cylindrical
symmetry about the magnetic field,83 and significant values of A/e

have been observed in both simulations and spacecraft data84 at sites
of collisionless magnetic reconnection. The isovolume of A/e � 0:08
also appears to be spatially colocated with the isovolume of Ek=ED
� 1 and the intense current layers that form between the flux-ropes.
More quantitatively, there is a moderate positive correlation between
Ek=ED and A/e (Pearson coefficient 0.6) in regions where the electric
field is super-Dreicer, Ek=ED � 1. The primary mechanism for the
generation of the agyrotropic electron distributions is presently unclear
although several possibilities have been suggested based upon tracking
particles in simulations of collisionless reconnection with strong

FIG. 9. Top panel: Ratio of the local parallel
electric field to the Dreicer field, shown for
Ek=ED � 1 (purple). Bottom: Agyrotropy,83

a scalar measure of the departure of the
electron pressure tensor from cylindrical
symmetry, shown for A/e � 0:08. Both
panels show a contour of the electron tem-
perature (Te ¼ 0.08) and magnetic field-
lines (white) to depict the oblique flux-ropes.
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electric field gradients.85 Since electron collisions act to isotropize the
pressure tensor, significant A/e is taken here to be a signature of the
transition to kinetic reconnection.

Figure 10 shows the electron momentum balance at tXci0 ¼ 88,
from a line of seed points at x0 ¼ ð428; 0; zÞ for z 2 ½zs � 12; zs þ 12
,
zs ¼ Lz=2, and integrated a distance of Ls¼ 10 (de). This small value of
Ls was chosen to prevent apparent broadening of the nonideal electric
field region when integrating along stochastic field-lines that exit the
kinetic scale diffusion regions but still have Ek 6¼ 0 due to finite plasma
resistivity. In contrast to Fig. 3, the region with finite hneeEki (orange)
is significantly thinner with half-thickness� 1.5 (de). The electron pres-
sure tensor term (green) is now the largest balancing electric field term
at the center of the current layer. To examine this further, the inset
shows the break-down of the electron pressure term into the gyrotropic
(cyan) and nongyrotropic (magenta) components, where PeG ¼ Pekb̂b̂
þ Pe?ðI� b̂b̂Þ;PeNG ¼ Pe � PeG;Pek ¼ Pe : b̂b̂, and Pe? ¼ ðTr½Pe

� PekÞ=2. The nongyrotropic part is significant in a thin region
d � qe < de in the very center of the current layer, but on either side,
the gyrotropic part has a larger contribution to hneeEki. This gyrotropic
part has been observed in 3D collisionless reconnection simulations in
Refs. 67 and 86 although it is identically zero at the X-point in 2D sim-
ulations due to symmetry. As such, the role of this term in decoupling
electrons from magnetic field-lines and permitting reconnection
remains unclear. Strictly, Ek 6¼ 0 is not a sufficient condition for recon-
nection in 3D, where the condition r� ðE þ ue � BÞ 6¼ 0 is more
appropriate.87 Only the part of the gyrotropic term with the nonzero
curl is able break the electron frozen-in condition and determine the
electron diffusion region, but, unfortunately, the noise level in the com-
ponents of the nonideal electric field is too large to reliably compute
the derivatives needed to examine this issue. Nevertheless, the �1:5de
half-thickness of the nonideal region remains in good agreement with
2D collisionless simulations, as well as the significant role of both the
electron inertia and nongyrotropic pressure tensor terms in balancing
the nonideal electric field. These results are taken as confirmation of

the transition to kinetic reconnection, which occurs within these thin
current layers on the electron kinetic scale.

VII. SUMMARY AND DISCUSSION

The transition from collisional to kinetic magnetic reconnection
was studied for the first time in 3D, using a first-principles kinetic
approach with a Monte-Carlo treatment of the Fokker-Planck collision
operator. Initial reconnection in the low-b force free current sheet pro-
ceeded in a quasi-2D Sweet-Parker regime, keeping the symmetry of
the initial perturbation, as expected for the single X-line collisional
region of the reconnection phase diagram10 shown in Fig. 1.

In the low-b sheet, intense Joule heating leads to more rapid thin-
ning than reported for previous studies24,38 with b � 1. While the cur-
rent layer remains collisional, transport resulting from the kinetic
description of collisions can include the classical effects of temperature
dependent anisotropic resistivity and thermal friction, viscosity, heat
conduction, and species thermal equilibration. However, a simplified
resistive-MHD model that includes a Spitzer-type law for the resistiv-
ity, neglects heat conduction, and assumes equal ion and electron tem-
peratures was found to reproduce the current layer thinning profile for
this simulation reasonably well. Prior to disruption of the current
layer, the resistive thinning causes the simulation to transition to the
“Multiple X-line” hybrid region of Fig. 1.

The 2D symmetry of the initial phase was broken by the oblique
plasmoid instability, which occurred in the dynamically thinning
Sweet-Parker sheet with well established reconnection outflow jets. In
the early phase of the plasmoid instability, the tearing modes were
found to be in the semicollisional regime (with growth rates smaller
than the collision frequency, �ei > c, and an inner layer thickness
below the sound-radius, DSC < qs). The growth rates for modes with
small oblique angles (h � 20�), which agreed well with linear semicol-
lisional theory predictions,50 were found to be large compared to the
rates of mode stretching and rotation by the outflow jets.

However, strongly oblique modes were stabilized at a much lower
angular cut-off (h � 35�) than predicted for standard tearing modes.
The presence of electron temperature gradients from the Joule heating
was considered as a mechanism for this observed stabilization, but a
theory accounting for this physics51 was also found to underpredict
the amount of stabilization. The precise reason for the stabilization
observed in the present simulation remains an open question, and it is
possible that the validity of boundary layer theory is violated for the
strongly oblique modes.52

Despite this narrow angular spectrum of oblique modes in the
linear regime, magnetic energy is subsequently injected into oblique
fluctuations by a combination of flux-rope rotation by the reconnec-
tion outflow jets, and secondary kink and coalescence instabilities. A
region of stochastic magnetic field is formed by the plasmoid instabil-
ity, which grows over time as more flux is reconnected and agrees rea-
sonably well with the observed extent of electron heat transport.

Apart from long wavelength variations in the y-direction, the
transition to kinetic reconnection proceeds in a manner similar to 2D
simulations.24,38 The parallel electric field becomes super-Dreicer
(1�Ek=ED � 5) at kinetic-scale current layers that form between the
oblique flux-ropes, and a significant part of the parallel force is
balanced by electron pressure tensor and inertia terms (although the
former has a gyrotropic component67 not present in 2D). Secondary
flux-ropes are observed to form in these thin current layers at late time

FIG. 10. Contributions to parallel force balance at tXci ¼ 132. Contributions have
been averaged in time and along the field-lines—see text for definitions. Quantities
are expressed in ion units, after normalization by n0Br0vA. Inset: Decomposition of
electron pressure tensor (green) into gyrotropic (cyan) and nongyrotropic (magenta)
components.
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in the simulation. The overall behavior described for this 3D simulation
supports the picture of the plasmoid mediated transition to kinetic
reconnection in the Multiple X-line hybrid regime, as indicated in Fig. 1.

Solar flare reconnection, which occurs in low-b force free current
layers, is also argued to be in the “Multiple X-line hybrid” regime
based on present understanding. With a flare Lundquist number of S
� 1013 and system-size10 k ¼ L=di � 4� 107, direct numerical simu-
lation is unfeasible in the near future and we are left to extrapolate
from smaller simulation and experimental studies. The S � 103–4 and
k � 102–3, as well as the low-b initial conditions used for this paper
are relevant to the newly constructed Facility for Laboratory
Reconnection Experiments (FLARE47).

Recently, a number of laboratory magnetic reconnection experi-
ments have observed the breakup of current layers due to the plasmoid
instability,88–90 but the plasmoid mediated transition from collisional
to kinetic reconnection has not yet been studied in detail. The full pic-
ture of the plasmoid instability in FLARE should take into account the
resistive thinning of the Sweet-Parker layer that forms due to inductive
current drive, the influence of the flux-core boundary conditions on
the growth of oblique modes, the semicollisional inner layer physics,
and the role of outflow jets in the stretching and rotation of modes. It
may also require the consideration of ion-neutral and neutral-neutral
collisions.91 Future work will extend the present study to experimen-
tally realistic cylindrical geometry of the FLARE experiment, including
the relevant physics, to better enable comparisons to be drawn.

ACKNOWLEDGMENTS

This work was supported by the Basic Plasma Science
Program from the U.S. Department of Energy, Office of Fusion
Energy Sciences. The large simulation was performed at the
National Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231. Supporting simulations
used resources from the Los Alamos National Laboratory
Institutional Computing Program, which is supported by the U.S.
Department of Energy National Nuclear Security Administration
under Contract No. DE-AC52-06NA25396.

APPENDIX A: D0crit DUE TO TEMPERATURE
GRADIENTS

Reference 51 gives a theory for the semicollisional drift-tearing
and internal kink instabilities for arbitrary plasma-b and D0, including
ion-orbit effects via a gyrokinetic treatment. In general, the dispersion
relations need to be computed numerically, but closed form expres-
sions can be found in certain asymptotic limits. First, the semicolli-
sional theory of Eq. (19) can be found74 in the limit of cold ions and
small-D0. Second, a dispersion relationship can be found for the strong
drift regime (including finite ion orbits) by expanding x ¼ xr þ ic in
powers of ðD=qiÞ � 1, where D is the semicollisional layer thickness
and qi is the ion gyroradius. Including only electron temperature gra-
dients74 so D ¼ DT defined in Eq. (20), and neglecting density and ion
temperature gradients, the lowest order frequency x0 is real

x0

xT
¼ 1:71

ffiffiffiffiffiffiffiffiffiffiffi
1þ s
pffiffiffiffiffiffiffiffiffiffiffi

1þ s
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
2:13s
p ; (A1)

where s ¼ Te=Ti, and xT ¼ kTe=ðeBLTÞ. At the next order, the
growth rate scales as

c
xT
� DT

pb̂T

D0 � D0crit
� �

; (A2)

where bT ¼ ðbe=2ÞL2s =L2T . The critical threshold for instability, D0crit,
is given by the expression

D0crit ¼
ffiffiffi
p
p

b̂T

qi

x2
0

x2
T

s

ð1þ sÞ2
ln

qi

DT

ffiffiffiffiffiffiffiffi
xT

2x0

r" #
� pb̂T

qi

x2
0

x2
T

�IðsÞ: (A3)

Here, the integral �IðsÞ is from the gyrokinetic ions.51,74 It is given
by

�IðsÞ ¼
ð1
0
dk

FðkÞ
GðkÞ �

s
1þ s

þ sffiffiffi
p
p
ð1þ sÞ2ð1þ kÞ

" #
; (A4)

with

FðkÞ ¼ s exp ð�k2=2ÞI0ðk2=2Þ � 1
� �

; (A5)

I0 is the modified Bessel function of the first kind, and GðkÞ
¼ FðkÞ � 1. To calculate D0crit that is used in Fig. 7, this integral is
calculated numerically based upon the local s at each rational sur-
face. The integral is negative (it is stabilizing) and has typical value
�I � �0:5 for the parameters used here.
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