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ABSTRACT

Using two-dimensional (2D) magnetohydrodynamics simulations, we show that Petschek-type magnetic reconnection can be induced using
a simple resistivity gradient in the reconnection outflow direction, revealing the key ingredient of steady fast reconnection in the collisional
limit. We find that the diffusion region self-adjusts its half-length to fit the given gradient scale of resistivity. The induced reconnection x-
line and flow stagnation point always reside within the resistivity transition region closer to the higher resistivity end. The opening of one
exhaust by this resistivity gradient will lead to the opening of the other exhaust located on the other side of the x-line, within the region of
uniform resistivity. Potential applications of this setup to reconnection-based thrusters and solar spicules are discussed. In a separate set of
numerical experiments, we explore the maximum plausible reconnection rate using a large and spatially localized resistivity right at the x-
line. Interestingly, the resulting current density at the x-line drops significantly so that the normalized reconnection rate remains bounded by
the value ’ 0:2, consistent with the theoretical prediction.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052317

I. INTRODUCTION

Magnetic reconnection is a ubiquitous phenomenon in plasma
systems that efficiently convert magnetic energy to plasma kinetic
energy. In astrophysical environments, observations suggest that mag-
netic reconnection is the driver of solar flares (e.g., Ref. 1) and magne-
tospheric substorms (e.g., Ref. 2). Particles accelerated by magnetotail
reconnection can also be responsible for the generation of aurora bor-
ealis and aurora australis (e.g., Ref. 3 and references therein).

Sweet–Parker model4,5 and Petschek model6 are the two most
famous classical reconnection models proposed using the resistive-
magnetohydrodynamics (MHD) framework. Reconnection in the
Sweet–Parker model develops an elongated diffusion region and has a
much smaller reconnection rate compared to that of the Petschek
model. While the generalized Sweet–Parker model shows agreements
with the experiments7 in the collisional regime, its reconnection rate is
many orders of magnitude lower in comparison with that inferred by
the energy release timescale of solar flares.8

On the other hand, reconnection in Petschek’s model has a short
(localized) diffusion region and the outflow is bounded by a pair of
standing slow mode shocks. In this reconnection geometry, not only
the diffusion region thickness is on the microscopic scale, but also its
length. This is in sharp contrast to the system-size long diffusion
region length in the Sweet–Parker model. The resulting larger

diffusion region aspect ratio corresponds to a faster rate, which is fast
enough to explain the timescale of solar flare observations and geo-
magnetic substorms. However, numerical simulations show that
Petschek reconnection cannot form in two-dimensional resistive
MHD simulations if the resistivity is uniform.9,10 Such systems appear
to lack any mechanism that shortens (localizes) the diffusion region
length. To explain this result, Kulsrud11 suggested that uniform resis-
tivity cannot sustain the magnitude of reconnected (normal to the cur-
rent sheet) magnetic fields near the end of the diffusion region, which
is critical in supporting the open geometry of the Petschek solution.
Kulsrud further pointed out the importance of the resistivity gradient
(in the outflow direction) between the x-line and the end of the diffu-
sion region. The fact that a stable Petschek open geometry can be real-
ized in 2D MHD simulations with a localized resistivity at the x-line
supports this idea.12

In this work, we demonstrate that a stable Petschek-type recon-
nection can be realized by imposing the resistivity that has a simple
one-dimensional (1D) hyperbolic tangent profile varying along the
outflow direction. This result is consistent with the finding of Baty
et al.,13 where only half of a localized resistivity is used in MHD simu-
lations. In this work, we further show that the resistivity gradient in
the outflow direction, not in the inflow direction, is the key to inducing
Petschek-type reconnection in 2D resistive MHD. This is also
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consistent with the result of Yan et al.,14 where they localized resistivity
in the outflow direction only. With a hyperbolic resistivity profile, we
can change the transition region length-scale and we find that the
reconnection diffusion region will self-adjust its length so that half of
the diffusion region just fits into this resistive transition region, neither
longer nor shorter. The x-line and the flow stagnation point always
reside within this transition region near the high resistivity end. This
finding further supports Kulsrud’s idea.11 We also show that the
averaged-equation method proposed by Baty et al.15 can, in certain
limits, quantitatively predict the spatial profiles of critical quantities,
including the reconnected magnetic field, the outflow speed, and the
reconnection layer thickness. Overall, we find that the reconnection
rate is determined by both this transition region length and the resis-
tivity value at the x-line. However, if the background resistivity is too
high to have a clear separation between the slow shock transitions that
bound the outflow exhaust, then the excessive resistive-diffusion
therein can reduce the reconnection rate. With this understanding in
mind, we go back to study Petschek-type reconnection using a two-
dimensional (2D) localized resistivity of different peak strength.
Interestingly, we find that the current density (J) right at the x-line can
drop significantly when a large localized resistivity (g) is imposed. The
resulting maximum plausible normalized reconnection rate (gJ) is
around 0.2, likely being constrained by the force-balance upstream of
the diffusion region;16 i.e., the diffusion region physics appears to play
a passive role and is forced to match this value.

This paper is organized in the following way. The simulation
setup and one of the reconnection simulations with a hyperbolic tan-
gent resistivity profile are described in Sec. II. In Sec. III, we explain
how resistivity-gradient helps maintain reconnected magnetic field,
realizing Petschek-type reconnection, as originally proposed by
Kulsrud.11 We investigate the details of the resistive MHD simulations
in Sec. IVA by performing a scaling study using the simple hyperbolic
tangent resistivity profile where we change the transition region
length-scale and the background value of the resistivity. In Sec. IVB,
we study the reconnection rates in simulations using exponentially
localized resistivity. In particular, we examine how the system
responds if one dramatically increases the resistivity right at the x-line.
Finally, we summarize and discuss the implication and application of
this work in Sec. V. In the Appendix, we briefly summarize the theo-
retical framework by Baty et al.15 that predicts key quantities within
the reconnection layer; for a given resistivity profile, one can solve for
the outflow speed, the half-width of the reconnection layer, and the
reconnected (normal) magnetic fields. This prediction is compared
with our simulation results.

II. MHD SIMULATION WITH A HYPERBOLIC TANGENT
RESISTIVITY PROFILE

We use Athena,17 a grid-based MHD code, to simulate magnetic
reconnection in resistive MHD. The governing equations are

@tqþr � ðq~vÞ ¼ 0; (1)

@tðq~vÞ þ r � q~v~v �~B~B þ pþ B2

2

� �
I

� �
¼ 0; (2)

@teþr � eþ pþ B2

2

� �
~v �~Bð~B �~vÞ

� �
¼ r � ð~B � g~J Þ; (3)

@t~B �r� ~v �~B � g~J
� �

¼ 0; (4)

where the energy density e ¼ p=ðc� 1Þ þ qv2=2þ B2=2l, and the
current density~J ¼ ð1=lÞr�~B. The ratio of specific heats c ¼ 5=3
and g is the resistivity. The permeability l is set to one in code unit.
Athena is written based on the finite-volume method (that solves
hyperbolic equations) with the higher-order Godunov methods and
the constrained transport implemented to ensure the divergence-free
condition on the magnetic field. Mass density, momentum, and energy
are solved at the center of grid points, while the magnetic field is solved
at the center of the grid surfaces.

All simulations in this paper are in 2D. The outflowing (zero-gra-
dient) boundary condition with four ghost cells is used to avoid the
saturation due to the flux pileup at outflow regions. Importantly, this
boundary better allows the system to evolve into a steady state. The
initial condition is a force-free current sheet, described by

~B ¼ B0tanh
x � xc

k

� �
ŷ þ B0 sech

x � xc
k

� �
ẑ ; (5)

where B0 is the magnitude of the anti-parallel magnetic field, k is the
current sheet half-width, and xc is the x-location of the current sheet.
We use B0 ¼ 1; k ¼ 0:04, xc¼ 1, and initial b ¼ p=ðB2=2lÞ ¼ 0:1 in
all simulations and let simulations evolve to quasi-steady states. The
Alfv�en speed based on the reconnecting magnetic field B0 and the
background density n0 ¼ 1 is, therefore, V A¼ 1 in our unit. The sim-
ulation domain in both the x- and y-directions is from 0 to 2. The res-
olution is 2=512 � 4� 10�3 unless otherwise mentioned. The
conclusion discussed in this paper does not change with an initial
Harris sheet configuration (not shown). Especially, the reconnection
rate in the nonlinear stage is not sensitive to the choice of the force-
free current sheets vs Harris sheets.

We apply a hyperbolic tangent resistivity profile varying in the y-
direction,

gtanhðyÞ ¼ 0:5g1 1� tanh
y � 1
lg

� �
þ g2; (6)

where lg is the resistivity gradient scale. Equation (6) gives asymptotic
g ¼ g1 þ g2 at y< 1 [i.e., the lower half-plane in Fig. 1(a) and other
similar figures] and g ¼ g2 at y> 1 (i.e., the upper half-plane).
Simulations show asymmetric Petschek-type reconnection similar to
the results of Baty et al.,13 in which they used a localized resistivity
profile in the upper half-plane and a uniform resistivity in the lower
half-plane. In their simulations, the upper and lower half-planes are
connected by a sharp step-like transition.

Figure 1 shows a representative run with the hyperbolic tangent
g-profile. The asymptotic resistivity at the upper half-plane is
2� 10�4, and that at the lower half-plane is 1� 10�3 with the transi-
tion length scale lg ¼ 0:05 (i.e., Run T1 in Table I). Panel (a) shows
the current density in the z-direction Jz. The dashed curve in Fig. 1(a)
marks the boundary of one side of the current sheet predicted by the
averaged-equations for the given resistivity profile (discussed in the
Appendix). Figure 1(b) shows the cut of the outflow speed. Figure 1(c)
shows the cut of the reconnected field. Both panels show the simula-
tion results (blue solid curve), those predicted by the averaged-
equations (orange dashed curve), and resistivity g profiles (red solid
curve). The predictions of the averaged-equations agree reasonably
well with this run. The deviation of Bx between the averaged-equations
solution and the simulation is larger at the lower-half plane, where g is
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larger. We will discuss this effect in Sec. IVA. The reconnection rate of
this case is roughly 0.04 in simulation and 0.07 predicted by the aver-
aged-equations.

Interestingly, it appears that the reconnection layer adjusts itself
so that the g-transition region turns to the upper-half of the diffusion
region, with both the x-line and flow stagnation point locate near the
high-g end [see Figs. 1(b) and 1(c)] and the upward outflow reaches
the plateau at the low-g end [see Fig. 1(b)]. Both exhausts are bounded
by slow shocks, and the shock transition region is thinner in the
upper-half plane because of the lower resistivity, as expected.

III. THE ROLE OF RESISTIVITY GRADIENT IN PETSCHEK
MODEL

Kulsrud11 suggested that the reconnected (normal) magnetic
fields immediately downstream of the diffusion region are removed by
the advection, but can be replenished by the reconnecting magnetic
field “rotated” into the normal (x-) direction by resistivity gradient
within the diffusion region. For Petschek-type reconnection, if the
resistivity is uniform, this advective loss will be higher than the genera-
tion if the diffusion length is not on the order of system size.
Therefore, the normal magnetic field decreases with time, causing the
diffusion region to extend to the system size. If there is a resistivity

gradient along the outflow direction, it provides an additional source
to generate the normal magnetic field, opening up the outflow geome-
try. We will briefly discuss the essence of this argument in the
following.

If the resistivity is uniform, the x-component of the induction
equation [Eq. (4)] can be expressed as

@Bx

@t
¼ �ð~v � rÞBx þ ð~B � rÞvx þ g

@2Bx

@x2
þ @

2Bx

@y2

 !
; (7)

assuming the plasma around the diffusion region is incompressible
(i.e., consistent with the simulation results in this paper). The first
term on the right-hand side is the down-swiping term which removes
the normal magnetic fields at the outflow. Since vx vanishes along the
outflow symmetry line, �~v � rBx � �vy@yBx . The second term on
the right-hand side is negative in reconnection geometry; thus,
Kulsrud11 removed this term and turned the equal sign “¼” to
inequality “�” in Eq. (7). The resistive term can be approximated as
g@2xBx ¼ �g@x@yBy because @2xBx � @2y Bx in a typical reconnection
geometry (i.e., low diffusion region aspect ratio) and r �~B ¼ 0 is
used. It was further assumed that By ¼ B0ð1� y2=L2Þ along the
inflow edge of the diffusion region, where L is the system size. By inte-
grating the induction equation from the outflow symmetry line to the
inflow edge of the diffusion region, one can obtain

a

�
@Bx

@t

	
� ah�vy@yBxi þ

2gyB0

L2
; (8)

where a(y) is the width of the diffusion region. In the steady state,
@Bx=@t ¼ 0. At the end of the diffusion region, the first term on the
right-hand side scales as�aVABx=L0, where VA is the Alfv�enic outflow
speed and L0 is the half-length of the diffusion region.
Consequentially, Eq. (8) then gives �aVABx=L0 þ 2gB0L0=L2 	 0. To
proceed further, one applies the inflow speed vi ¼ ðVAg=L0Þ1=2 of the
Sweet–Parker solution4,18 based on a diffusion length L0, the flux con-
servation VABx ¼ viB0, and the mass conservation VAa ¼ viL0 to this
inequality, obtaining L0 	 L=

ffiffiffi
2
p

. This result suggests that a plausible
steady-state solution exists only when the diffusion length extends to
the system size.

FIG. 1. (Run T1) (a) The current density Jz under a hyperbolic resistivity profile. The contours of the flux function are shown in black. The blue dashed curve marks the layer
boundary predicted by the averaged-equations in the Appendix. (b) The outflow speed vy cut at the symmetric line x¼ 1 in simulation (blue solid line) and that predicted by the
averaged-equations (orange dashed line). For reference, the resistivity g is plotted as the red line. The flow stagnation point is labeled as “s” on the g profile to show its relative
position to the g-transition region. (c) The normal magnetic fields Bx cut at x¼ 1 in simulation (blue solid line) and that predicted by the averaged-equations (orange dashed
line). The position of the x-line is labeled as “x” on the g-profile.

TABLE I. Simulation parameters with a resistivity of hyperbolic tangent profile.
gbottom denotes the resistivity value at the lower half-plane (y< 1), and gtop denotes
the resistivity value at the upper half-plane (y> 1). lg is the resistivity scale length,
and b ¼ p=ðB2=2lÞ is the initial upstream plasma beta.

Run gbottom ¼ g1 þ g2 gtop ¼ g2 lg b

T1 1� 10�3 2� 10�4 0.05 0.1
T2 1� 10�3 2� 10�4 0.1 0.1
T3 1� 10�3 2� 10�4 0.2 0.1
T4 1� 10�3 2� 10�4 0.4 0.1
T5 2� 10�3 1:2� 10�3 0.05 0.1
T6 5� 10�3 4:2� 10�3 0.05 0.1
U1 1� 10�3 1� 10�3 NA 0.1
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In contrast, if there is a resistivity gradient, the x-component of
the induction equation becomes

@Bx

@t
¼� ð~v � rÞBx þ ð~B � rÞvx þ g

@2Bx

@x2
þ @

2Bx

@y2

 !

� @g
@y

@By

@x
� @Bx

@y

� �
: (9)

Since @xBy � @yBx in the current layer geometry, the last term on the
right-hand side can be approximated as ’ �ð@ygÞð@xByÞ, and this
term is positive if g is stronger at the x-line (i.e., @yg < 0 for y> 1).
Therefore, this resistivity gradient acts as an additional source to sup-
ply the normal magnetic field at the outflow, supporting a shorter cur-
rent sheet length L0. The observed open geometry induced by the
simple resistivity gradient in our simulations supports this idea.

Note that this argument also works with a current-dependent
resistivity gðJzÞ if resistivity can be enhanced by the local current den-
sity, i.e., @Jzg > 0. In this situation, using the chain rule the last term
of Eq. (9) then becomes’ �ð@JzgÞð@yJzÞð@xByÞ, that can be positive if
the outflows were to be opened up, which requires @yJz < 0 for y> 1.
i.e., this additional supply of Bx can be consistent with an opening
geometry. This prompted the research on the current-driven anoma-
lous resistivity.11,19–22

Following the argument just discussed above, the g-transition
region in our case is capable of inducing the opening of the upper

outflow exhaust. Since the out-of-plane electric field Ez shall be uni-
form in a 2D steady state, the fast flux-transport by the opened upper
outflow also leads to the opening of the lower outflow exhaust, even
though the lower-half plane has a uniform resistivity. The same reason
(i.e., uniform Ez) might also explain the development of the Petschek-
type outflow exhaust (bounded by slow shocks) on the opposite side
(respected to an x-line) of a growing plasmoid, which is commonly
seen in high-Lundquist number MHD simulations,23 i.e., the growth
of a plasmoid opens up the outflow on one side of the x-line, and the
outflow exhaust on the other side consequently develops open geome-
try as well.

IV. SCALING STUDY USING MHD SIMULATIONS

In this section, we performed a systematic numerical study of
magnetic reconnection using the hyperbolic tangent resistivity profile
specified in Eq. (6), and then we conduct a separate set of study to
explore the maximum plausible reconnection rate using a spatially
localized exponential profile at the x-line, as specified in Eq. (12).

A. With a hyperbolic tangent g profile

The system with a hyperbolic tangent resistivity profile [Eq. (6)]
tends to evolve into a state where the upper half portion of the diffu-
sion region adjusts itself to the gradient scale length lg of the given
hyperbolic tangent g profile. This observation becomes clearer when

FIG. 2. (Runs T2 and T3) Panels (a) and (b) show the current density Jz and the outflow speed vy cut at x¼ 1 at the nonlinear state (blue from simulation, orange from theory)
of Run T2. Panels (c) and (d) are for Run T3. These two runs are only different in the gradient scale lg, as also illustrated by the red curves in (b) and (d). Note that the solu-
tions of the averaged-equations (orange) deviate from simulations (blue) more for larger lg, that is, smaller resistivity gradient. The locations of the stagnation point and x-line
for both cases are labeled as s and x on the g-profiles in panels (b) and (d).
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one varies lg. Figure 2 shows the current density Jz and the outflow
speed vy cut at x¼ 1 for lg ¼ 0:1; 0:2 (Run T2 and T3) at t¼ 10, after
reaching quasi-steady states. Combining with the result of Run T1
with lg ¼ 0:05 in Fig. 1, we conclude that the x-line and the stagnation
point are both located near the high-g end within the transition region.
However, these two points do not coincide with each other due to the
outflow asymmetry introduced by this resistivity profile, and the stag-
nation point is always closer to the high-g plateau compared to the x-
line. In the positive y-direction, outflow speed reaches the Alfv�enic
plateau near the low-g end.

Reconnection rates in these simulations are calculated using the
out-of-plane electric field Ez;xline ¼ gxlineJz;xline right at the x-line, and
they are normalized as R 
 Ez;xline=ðB0VAÞ, where B0 is the asymptotic
value of the magnetic field at the upstream region, and VA

¼ B0=ðlqÞ1=2 is the Alfv�en speed calculated using this upstream mag-
netic field and density. The evolution of reconnection rates for differ-
ent lg is shown in Fig. 3(a). A uniform resistivity g ¼ 1� 10�3 case
(U1) is also plotted for comparison. The reconnection rates decrease
as lg increases, and it can be explained by the following simple analysis;
since the normalized rate R ¼ gxlineJz;xline=ðB0VAÞ and we know
R ’ d=L0 from the Sweet–Parker scaling,4 where d and L0 are the half-
thickness and the length of the “upper” diffusion region (i.e.,
y > yxline), respectively. On the other hand, our simulation demon-
strates that L0 ’ 2lg and gxline ’ gbottom. We can approximate Jz;xline
’ B0=ðldÞ in the small diffusion region aspect ratio (d=L0) limit.
Combining all these relations, one can derive the scaling of the recon-
nection rate to be

R ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxline

lVA2lg

r
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbottom
lVA2lg

r
: (10)

The reconnection rate is thus determined by both the resistivity
gradient length and the resistivity value right at the x-line, which is
close to gbottom in these runs. Figure 3(b) shows the reconnection rates,
averaged after reaching the peak, vs the resistivity gradient scale length

lg in a log –log scale plot. The simulation results are shown as blue
dots, and the prediction from Eq. (10) is plotted as the orange line.
R / l�0:3g is also plotted (green line) for comparison, and one can see
that the measured reconnection rates compare better with l�0:3g scaling,
instead of l�0:5g . This could be caused by the fact that the locations of
the x-lines are not exactly at the edge where resistivity starts to
decrease (see Fig. 2). There is also about a factor of two difference that
is not captured by this simple scaling, but Eq. (10) does qualitatively
explain the decreasing trend.

In the following, we also investigate the effect of background
resistivity that is parametrized by g2 of the hyperbolic tangent profile;
we increase g2 while keeping the same g1 and lg. While the solutions
from the averaged-equations (see the Appendix) suggest the increase
in reconnection rate, our simulations show an opposite trend. This is
demonstrated by the Runs in Fig. 4(a) where g1 ¼ 8� 10�4, but Run
T1 has g2 ¼ 2� 10�4, Run T5 has g2 ¼ 12� 10�4, and Run T6 has
g2 ¼ 42� 10�4. The reconnection rates decrease as the background
resistivity increases.

Similar to the thickness of the reconnection diffusion region, the
shock thickness also increases with the background resistivity. This
could introduce a finite current density Jz within the entire outflow
exhaust, as seen in Fig. 4(d). According to Ohm’s law

Ez ¼ vyBx þ gJz (11)

since Ez along the outflow symmetry line should be uniform in the
steady state. If the current density Jz remains significant at the outflow
region and the reconnection electric field Ez does not increase with a
higher background g, then vyBx should be smaller; this is consistent
with the significant drop of Bx and vy observed in Figs. 4(b) and 4(c).

In addition, the current sheet tends to extend to the outflow
boundary if the entire reconnection layer is immersed within the non-
ideal region with a finite non-ideal electric field gJz . To illustrate the
underlying reason, we will use the notations in Fig. 5. The inflow and
outflow quantities are evaluated at point i and o, respectively. Point h

FIG. 3. (a) The time evolution of normalized reconnection rates of Runs T1, T2, T3, and T4, which have different resistivity gradient scale lg. A uniform resistivity
g ¼ 1� 10�3 case (U1) is also plotted for comparison. Reconnection rates decrease as lg increases. The initial drops are due to the current sheets broadening that reduces
Jz at the x-line. (b) Reconnection rates vs the gradient scale length. Blue dots are the average reconnection rates after they reach the peak values. Equation (10) is plotted as
the orange line, and a scaling R / l�0:3g is plotted as the green line for comparison.
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is at the middle between the x-line and point o. L0 and d are the half-
length and the half-width of the diffusion region. Near the inflow
region, the out-of-plane electric field at point i matches the value at
the x-line, Ez;i ¼ vx;iBy;i ’ Ez;xline. At point o, we have Ez;o ¼ vy;oBx;o

þgJz;o from Ohm’s law [Eq. (11)]. Using the Maxwell–Faraday’s law
r�~E ¼ �@t~B and the flux conservation vy;oBx;o ’ vx;iBy;i, we can
estimate the time derivative of the reconnected field at point h to be
@tBx;h’�@yEz ’�ðEz;o�Ez;xlineÞ=L0 ’�ðvy;oBx;oþgJz;o� vx;iBy;iÞ=
L0 ¼�gJz;o=L0. Therefore, the time derivative of the reconnected field
at point h is negative (@tBx;h< 0) if the current density at point o is
finite (Jz;o> 0)—a situation that occurs when there is no clear separa-
tion between the pair of slow shocks at the outflow region. The recon-
nected magnetic field Bx;h at point h thus tends to decrease with time
and the current layer will extend to the boundary, reducing the open-
ing geometry as seen in Fig. 4(d). Note that this mechanism is different
from Kulsrud’s idea discussed in Sec. III. In short, the wide coverage of
the non-ideal region (i.e., the thickening of the shock transition region)
due to a large background resistivity causes excessive resistive-
diffusion, resulting in extended current sheets despite the imposed
sharp resistivity gradient.

Finally, we also performed simulations (not shown) with a hyper-
bolic tangent resistivity profile that varies along a direction at a 45�

angle from the outflow (y-) direction and found that Petschek-type

reconnection can still be realized. This further suggests that the resis-
tivity gradient projected in the outflow direction is sufficient in facili-
tating open outflow geometry.

B. With a spatially localized g at the x-line

In this sub-section, we study how the system responds to an
extremely large resistivity spatially localized around the x-line. For the
same reason discussed before, Petschek-type reconnection will be real-
ized because of the presence of resistivity gradient along the outflow
direction. Special attention is dedicated here to find the maximum
plausible reconnection rate potentially applicable to all reconnection
systems. To do so, we adopt the following g-profile that exponentially
decays out of the center of the simulation domain (i.e., the x-line):

g exp ¼ g1 exp � r
lg

� �
þ g2; (12)

where the distance to the center is parameterized by the radius
r 
 ½ðx � 1Þ2 þ ðy � 1Þ2�1=2. The peak value of the resistivity is
gxline ¼ g1 þ g2 at the center ðx; yÞ ¼ ð1; 1Þ and the lowest value is g2
in the background. Figure 6(a) shows the reconnection rates of differ-
ent gxline ¼ g1 þ g2 from 5� 10�4 to 1. The parameters of the simu-
lations are summarized in Table II.

FIG. 4. (Run T1, T5 and T6) (a) Reconnection rates with the same resistivity gradient (determined by g1 ¼ 8� 10�4 and lg ¼ 0:05) but with a different background resistivity
g2 from low to high in Runs T1 (blue), T5 (orange), and T6 (green). (b) The outflow speed vy cut at x¼ 1 at the nonlinear state. (c) The normal magnetic field Bx cut at x¼ 1
at the nonlinear state. In panels (b) and (c), the resistivity g of run T6 is shown as the red line. (d) The current density Jz of run T6 at the nonlinear state. While the flux function
is slightly bent inside the diffusion region, the rather thick current sheet extends to the outflow boundaries.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 072109 (2021); doi: 10.1063/5.0052317 28, 072109-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


From Fig. 6(a), it is clear that, with a fixed resistivity gradient
scale lg ¼ 0:05, a larger gxline results in a higher reconnection rate.
Panel (b) shows the current density of Run E1, which has a well-
localized diffusion region, and the open outflow exhausts are bounded
by the sharp transitions of slow shocks. The reconnection rate of this
case (’ 0:04) is the lowest in panel (a) because it has the lowest
gxline ¼ 5� 10�4. Run E2 has a higher resistivity gxline ¼ 1� 10�3. Its

rate is shown in red in Fig. (6a), which is very close to the rate mea-
sured in hyperbolic tangent resistivity simulation that has the same
g1 þ g2 and lg (Run T1, recall that the x-line develops close to the
high-g end, thus gxline ’ gbottom ¼ g1 þ g2 ¼ 1� 10�3 in this run).
This is consistent with our expectation that the resistivity gradient
scale and strength right at the x-line determined the rate (if the back-
ground resistivity is low enough).

The most surprising case is Run E5 that has an extremely strong
gxline ¼ 1:0, that is 2000 times larger than that in Run E1 [Fig. 6(b)].
In this case, the current sheet broadens and the dramatic drop of the
current density right at the x-line is a pronounced feature, as shown in
Fig. 6(c). Consequently, the reconnection rate ER ¼ gxlineJz;xline
remains on the order of the typical fast rate 0.1,24 as shown in Fig.
6(a). This numerical experiment demonstrates that the reconnection
rate is bounded by physics outside of the diffusion region, presumably
by the force-balance in the upstream region.16 No matter how strong
and localized the resistivity is, the diffusion region is forced to adjust
itself to accommodate this maximum plausible rate ’ 0:2. The slight
increase in the rate at E5 near the end comes from the numerical
effects at the boundary, which we will leave for future investigation.

Along this line of discussion, it is also interesting to compare the
maximum reconnection rate predicted by Petschek,6

RPetschek ’
p

8 ln S
; (13)

where S ¼ LVA=g is the Lundquist number, L¼ 1 is system size, VA is
the Alfv�en speed, and g is the resistivity. For Run E5, the relevant g is
the value near the x-line, gxline ¼ 1, because in Petschek’s derivation, g
is introduced by matching the reconnection electric field at the x-line
to the value immediately upstream of the diffusion region, i.e.,

FIG. 6. Panel (a) shows the scaling of reconnection rates in simulations with a spatially localized resistivity at the x-line, including Runs E1 (purple), E2 (red), E3 (green), E4
(orange), and E5 (blue). Panels (b) and (c) show the current density and flux function of Run E1 and Run E5, respectively, at late time. Note that the current density drops sig-
nificantly at the x-line for an extremely strong resistivity in panel (c), so that gJz remains bounded.

TABLE II. Simulation parameters with a resistivity of exponential profile.

Run gxline ¼ g1 þ g2 gbackground ¼ g2 lg b

E1 5� 10�4 1� 10�4 0.05 0.1
E2 1� 10�3 1� 10�4 0.05 0.1
E3 1� 10�2 1� 10�4 0.05 0.1
E4 5� 10�2 1� 10�4 0.05 0.1
E5 1 1� 10�4 0.05 0.1

FIG. 5. The orange rectangle represents the diffusion region. The diffusion region
length (L0) is determined by the imposed resistivity gradient scale (lg). The yellow
region illustrates the thickness of downstream slow shock transitions. Point o
locates at the end of the diffusion region. Point i is at the inflow edge of the diffusion
region. Point h is halfway between the x-line and point o. The thickening of the
shock transition regions due to a large background resistivity widens the coverage
of the non-ideal region, immersing point o with a finite gJz .
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Ez;xline ¼ gxlineJz;xline ’ vx;iBy;i (the same notations used in the discus-
sion of Fig. 5). Thus, the reconnection rate is predicted to approach
infinity in Petschek’s model, i.e., 1= lnð1� 1=1Þ ! 1 in Eq. (13).
However, the reconnection rate is still on the order of the typical fast
rate value 0.1. This discrepancy likely also results from the lack of a
self-consistent consideration of the force-balance upstream of the dif-
fusion region, which applies to all reconnection systems,16 either colli-
sional or collisionless.

V. SUMMARY AND DISCUSSION

In summary, we find that steady Petschek-type fast magnetic
reconnection can be generated as long as there is an g-gradient along
the reconnection outflow direction in MHD simulations. This finding
supports the idea of Kulsrud11 that suggested a resistivity gradient can
provide additional supply of the normal magnetic fields within the dif-
fusion region, balancing the loss by the outflow convection. In simula-
tions with a resistivity that has a simple hyperbolic tangent profile, the
opening exhaust on one side leads to the opening on the other side
because the electric field is uniform in a 2D steady state. The diffusion
region self-adjusts its half-length to fit the resistivity gradient length.
Therefore, increasing the resistivity gradient length will decrease the
reconnection rate.

The solutions of the averaged-equations (see the Appendix) pro-
posed in Refs. 15 and 25 show reasonable agreement with the hyper-
bolic tangent resistivity simulations when the resistivity gradient is
large and the resistivity background is small. The solutions do not
agree well with our simulations when there is a large background resis-
tivity or a small resistivity gradient, and we provide an explanation to
address the effect of large background resistivity. In addition, the
reconnection rates predicted by the averaged-equations are not
bounded in the large background g limit. It is likely due to the lack of
consideration on the upstream force-balance, which is critical in limit-
ing the reconnection rate.16

This work demonstrates that anti-parallel magnetic fields that
thread these two regions will prefer to reconnect at this interface,
where the energy release is most efficient. The fact that we can induce
fast reconnection in collisional plasmas using resistivity gradient, and
confine the x-line within the transition region, may be handy for the
design of reconnection-based thrusters;26 i.e., a collisional plasma
might be more accessible than collisionless plasma in compact devices,
and we know how to realize a stable single x-line fast reconnection.

In natural plasmas, a resistivity gradient can arise at the sharp
transition layer of temperature and density, or at the interface between
different ion species,27,28 such as the solar transition region29 or the
photosphere–chromosphere interface.30 The resistivity gradient scale
at the interface between the photosphere and chromosphere is esti-
mated as 100 km,31 which is smaller than (or, at least, not larger than)
the size of flux tubes observed30 (� 200–300 km, which will be the sys-
tem size of our simulations). This suggests that our result could be rel-
evant to reconnection phenomena occurring in the lower solar
atmosphere. In particular, our work predicts that solar spicules,32,33 if
driven by reconnection, may tend to develop at the altitude of a sharp
resistivity gradient.

On a separate issue, although resistive MHD is often deemed
inadequate to address the physics at a diffusion-region scale, it never-
theless allows us to test out the maximum plausible reconnection rate
in a clean fashion. Specifically, we can control the strength and

localization of resistivity, which simply cannot be done in fully kinetic
simulations; i.e., fully kinetic simulations generate dissipation and dif-
fusion self-consistently.34 We found that the reconnection rates are
well-bounded by value ’ 0:2, no matter how strong the localized
resistivity is. The existence of this upper bound can be explained by
the upstream force-balance in the MHD region.16 This fact has a sig-
nificant implication, suggesting that a strong anomalous resistivity will
not further increase much the typical fast rate of order 0.1 reported in
2D laminar kinetic simulations.35,36 Notably, the reconnection rates
observed by NASA’s magnetospheric multiscale (MMS) mission37–41

are consistently bounded by the maximum plausible value 0.2 demon-
strated here.

In conclusion, this work shows that a resistivity gradient can effi-
ciently induce a spatially localized diffusion region and fast reconnec-
tion in collisional plasmas. We further expect that if the local
reconnection electric field excesses the Dreicer runaway value, the dif-
fusion region plasma transitions to the collisionless regime,42,43 and
kinetic physics34–36,44–49 can take over to continue fast reconnection.
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APPENDIX: AVERAGED MHD EQUATIONS

To get a more quantitative comparison to our simulation results,
here we introduce the averaged MHD equations derived by Refs. 15
and 25 Physical quantities inside the diffusion region, in the steady
state, are averaged across the reconnection layer (illustrated in Fig. 7) to
reduce the full MHD partial differential equations (PDEs) into a much
simpler system of ordinary differential equations (ODEs), that depends
only on coordinate y. For a given resistivity profile, one can then solve
for the averaged outflow speed, current sheet width, and averaged
normal (reconnected) magnetic field. In this work, we apply this theory
using the hyperbolic tangent resistivity profiles [Eq. (6)] and compare
the solutions with our numerical simulations in Figs. 1, 2, and 4.

The averaged continuity equation, momentum equation,
energy equation, and Ohm’s law are derived to be

d
dy
ðahqihvyiÞ ¼ �qavxa; (A1)

d
dy
ðhqihvyi2aÞ ¼ �a

dhpi
dy
þ ByahBxi; (A2)

@

@y

hqihvyi2

2
þ chpi

c� 1

" #
ahvyi

( )
¼ � cpa

c� 1
þ B2

ya

� �
vxa; (A3)

Ea ¼ hvyihBxi þ
gBya

a
; (A4)

where a(y) is the half-width of the current sheet, physical quantities
with subscript “a” indicate their values at x ¼ aðyÞ, and the aver-
aged quantities are defined by averaging over x from 0 to a(y),
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hAiðyÞ 
 1
a

ða
0
Aðx; yÞdx: (A5)

In the following, magnetic field B is normalized to the
upstream magnetic field (B0), velocity to the upstream Alfv�en speed
(B0=

ffiffiffiffiffiffiffiffiffiffi
l0q0
p Þ, density to the density at a(y) (qa), pressure to the

upstream magnetic pressure (B2
0=2l0), l0 ¼ 1, and length to the

system size (L). Therefore, Bya¼ 1, qa ¼ 1; pa ¼ b=2 are assumed,
and we drop off the angle brackets for convenience. The averaged-
equations become

aqvy ¼ MAðy � yspÞ; (A6)

d
dy
ðqv2yaÞ ¼ Bx; (A7)

qv2y
2
þ cð1þ bÞ

2ðc� 1Þ

" #
avy ¼

cb
ðc� 1Þ2þ 1

� �
MAðy � yspÞ; (A8)

Ea ¼ MA ¼ �vxaBya ¼ Bxvy þ
gðyÞ
a
; (A9)

where ysp is the position of the flow stagnation point and MA is the
inflow Alfv�en Mach number. Baty et al.15 further combine these
equations into a single ODE by plugging Eqs. (A6)–(A8) into Eq.
(A9),

ðy � yspÞ
dvy
dy
þ vy ¼

1
vy
� qgðyÞ
M2

Aðy � yspÞ
; (A10)

where

q ¼ 5ð1þ bÞ
5bþ 4� 2v2y

(A11)

is the averaged density of plasma inside the diffusion region and
c ¼ 5=3 is used.

Given an gðyÞ profile, MA and ysp can be solved by expanding
vy and g with respect to ysp,

vy ¼ v1ðy � yspÞ þ v2ðy � yspÞ2 þ v3ðy � yspÞ3 þ � � � ; (A12)

g ¼ g0 þ g1ðy � yspÞ þ g2ðy � yspÞ2 þ � � � : (A13)

By plugging these expansions into Eq. (A10) and solving for the
coefficients, one can get

v1 ¼
ð5bþ 4ÞM2

A

5ð1þ bÞg0
; (A14)

v2 ¼ �
g1ð5bþ 4ÞM2

A

g205ð1þ bÞ ; (A15)

v3¼
ð5bþ4ÞM2

A

25ð1þbÞ2g30
�2ð4þ5bÞM4

Aþ5ð1þbÞðg21�g0g2Þ
� �

; (A16)

v4 ¼
ð4þ 5bÞM2

A

125ð1þ bÞ3g40
½25ð1þ bÞ2ð�g31 þ 2g0g1g2 � g20g3Þ

þð4þ 5bÞð34þ 35bÞg1M4
A�: (A17)

The condition for convergence is obtained by requiring the
coefficients of higher-order terms to vanish

lim
n!1

vn ¼ 0:

We take vn¼ 0 and vnþ1 ¼ 0 for n¼ 3 since v1 and v2 are the lowest
order terms needed to reproduce the bi-directional outflows. Baty
et al.15 solved MA and ysp using different values of n and showed
that their numerical values do not change much if n 	 3, as shown
in Tables I and II in their paper. After solving the numerical values
ofMA and ysp by setting Eqs. (A16) and (A17) to zeros, the averaged
outflow speed vy can be obtained numerically by solving Eq. (A10).
Note that the averaged Eq. (A4) should capture the physics of
Kulsrud’s mechanism. To see this, we take the y-derivative of the
z-component of the averaged Ohm’s law, which gives

@y

ða
0
Ezðx; yÞdx ¼ @y

ða
0
vyðx; yÞBxðx; yÞdx þ @y

ða
0
gðx; yÞJzðx; yÞdx:

(A18)

Applying the fundamental theorem of calculus, we getða
0
@yEzðx; yÞdx þ

da
dy

Ezða; yÞ

¼
ða
0
@y vyðx; yÞBxðx; yÞ
� �

dx þ da
dy

vyða; yÞBxða; yÞ

þ
ða
0
@y gðx; yÞJzðx; yÞð Þdx þ da

dy
gða; yÞJzða; yÞ: (A19)

Using the un-averaged Ohm’s law

Ezða; yÞ ¼ vyða; yÞBxða; yÞ þ gða; yÞJzða; yÞ; (A20)

we have

FIG. 7. Petschek-type reconnection configuration. The inflow is in the x-direction
and the outflow is in the y-direction. Solid arrows indicate magnetic fields. Dashed
lines bound the current sheet, inside which are the diffusion region, the transition
region, and the downstream region of standing slow shocks.
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ða
0
@yEzðx;yÞdx¼

ða
0
@y vyðx;yÞBxðx;yÞ
� �

dxþ
ða
0
@y gðx;yÞJzðx;yÞð Þdx:

(A21)

This is the induction equation (7) averaged over x from 0 to a(y),
which was used to derive Eq. (8). Figure 1 has shown the prediction
of a(y) in panel (a), vyðyÞ in panel (b), and BxðyÞ in panel (c) for
Run T1. The agreement is reasonable.
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