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θ0 Inclination angle of the wire current to the norm direction of
the loop plane

κ Curvature of a magnetic field

λD Debye length

νe Electron Coulomb collision frequency with ambient plasma

φ Stream function

ψ Magnetic flux function

ρ Density

ρs Ion sound radius

σ Magnetization parameter

τ Particle gyroperiod

τA Alfvèn time
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I know that I know nothing
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CHAPTER 1

INTRODUCTION

If I have seen further it is by standing on
the shoulders of Giants.

—Isaac Newton

Solar flares are the most explosive energy release in the solar system and the

main driver of space weather. They accelerate electrons to tens of MeVs and ions

to GeVs. Electromagnetic emission encompass a broad frequency band from radio

emissions at the longest wavelength, through optical emission to X-rays and gamma

rays at the shortest wavelength (e.g. Lin (2011)). One major unsolved problem in solar

flare research is the acceleration of nonthermal particles, though several mechanisms

have been proposed. Additionally, solar flares are usually accompanied by coronal

mass ejections (CMEs), which drive shocks to accelerate energetic particles to even

higher energies through the diffusive shock acceleration (DSA) mechanism1. The

diffusive shock acceleration mechanism requires a “seed” particle population, which

is most likely originated at the solar active region before the eruption of CMEs. The

pre-acceleration mechanism of this “seed” population has not been well addressed.

In this chapter, I will briefly review the solar flare observations relevant to this thesis

1Particles are scattered back and forth across a shock and get energized in a way similar to
multiple reflections between two converging walls. The number of times that a particle cross a shock
is random because the scattering by turbulence or plasma waves is a diffusive process (Zank, 2014).
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research and then introduce the particle acceleration mechanisms. I will conclude by

pointing out some of the key problems addressed in this thesis research.

1.1 Multi-wavelength observations of solar flares

Historically, solar flares were discovered in white light in 1859 (Carrington,

1859; Hodgson, 1859). In 1924, George Hale developed the spectrohelioscope, which

can make narrow-band monochromatic images of the entire Sun for any chosen wave-

length in the visible solar spectrum (Stenflo, 2015). When used with a Hα (λ = 656.28

nm) filter, the image from the spectrohelioscope often shows two beautiful ribbons

as shown in Figure 1.1 (a). Interestingly, the distance between these two ribbons

increases with time, which was recognized later as an evidence of magnetic recon-

nection in solar flares (Kopp and Pneuman, 1976). In 1908, George Hale used the

spectrohelioscope to find the famous Zeeman splitting in sunspots, which established

that sunspots are magnetic structures (Hale, 1908). This profound discovery led to

extensive research of the role of magnetic field in solar energetic processes. The Sky-

lab mission in early 1970s observed coronal soft X-ray loops above two-ribbon flares

where magnetic field is strong. Solar Maximum Mission (SMM ) in early 1980s ob-

tained X-ray images of solar flares and showed that large-scale coronal structures with

temperatures up to 107 Kelvin are associated with solar flares. Yohkoh and its follow-

up Hinode made several key findings to support the magnetic reconnection process

during solar flares, i.e., cusp-shaped soft X-ray arcades in long-duration flares (Shi-

bata et al., 1995), above-the-loop-top hard X-ray sources in impulsive flares (Masuda

et al., 1994) and soft X-ray sigmoid structures as signatures of the onset of flares
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and CMEs (Figure 1.1 (b)). Transition Region and Coronal Explorer (TRACE ) and

Solar Dynamics Observatory (SDO) have produced amazing images in the extreme

ultraviolet (EUV) band. The background of Figure 1.1 (b) shows different bands of

the SDO/AIA observations of the flare loops, overplotted are the contours of the hard

X-ray (HXR) observations from Reuven Ramaty High Energy Solar Spectroscopic Im-

ager (RHESSI ) and the radio observations from the Very Large Array (VLA) (Chen

et al., 2015). γ-ray emission has also been observed by RHESSI (Vilmer et al., 2011)

and recently by the Fermi gamma-ray space telescope (Ajello et al., 2014; Ackermann

et al., 2014).

All these emissions are produced by heated plasma or accelerated nonthermal

particles. The microwave and high frequency radio (> 5 GHz) are by gyrosynchrotron

emission2, while lower-frequency radio (< 2 GHz) is due to plasma emission (White

et al., 2011). Soft X-ray emission is due to bremsstrahlung between thermal electrons

and ambient ions. Hard X-ray emission (> 10 keV) is due to bremsstrahlung between

nonthermal electrons and ambient ions. Narrow and broad γ-ray emission is through

nuclear interaction of energetic ions with ambient protons and heavy nuclei. To

interpret the multiple-wavelength observations, we need to understand how plasma is

heated from ∼ 1 MK to 10s of MK and how particles are accelerated from a thermal

population to nonthermal energies.

2The terminology gyrosynchrotron emission refers to the emission due to mildly relativistic elec-
trons, in comparison to synchrotron radiation which is due to highly relativistic electrons (Lorentz
factor � 1).
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(a) (b)

(c) (d)

Figure 1.1 Multi-wavelength observations of solar flares. (a) The great ‘Seahorse
Flare’ of August 7th, 1972. This image in the blue wing of Hα shows the two-ribbon
structure late in the event, with bright Hα loops connecting the ribbons. Image
credit: Big Bear Solar Observatory (BBSO). (b) A radio source (blue; at 1.2 GHz)
is observed at the top of hot flaring loops (∼ 10 MK), which is nearly cospatial
with a nonthermal hard X-ray (HXR) source (white contours; at 15 to 25 keV) seen
by RHESSI. From Chen et al. (2015). Reprinted with permission from AAAS. (c)
The “S” shaped sigmoid structures in soft X-ray. Reproduced from McKenzie and
Canfield (2008). (d) The thermal emissions in the 6–8 keV range (green contours)
show the location of the main flare loops also seen in the 193 Å SDO/AIA image.
The non-thermal HXR emissions come from the footpoints of the thermal flare loops
(blue contours), but also from above the main flare loop as outlined by the 30–80 keV
contours. Reproduced from Krucker and Battaglia (2014) with permission of AAS.
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1.2 Particle acceleration during solar flares

With the discovery of strong magnetic field (∼ 103 Gauss) in sunspots (Hale,

1908), it is conceivable that magnetic field energy is the main energy source of solar

flares. In 1947, Ronald Giovanelli proposed that magnetic energy can be dissipated

through a current sheet containing a magnetic neutral point (Giovanelli, 1947). The

standard solar flare model (CSHKP) including the magnetic reconnection process has

evolved since then (Carmichael, 1964; Sturrock, 1966; Hirayama, 1974; Kopp and

Pneuman, 1976). A unified model is shown in Figure 1.2. Magnetic energy is built

up by flux emergence below the photosphere or shearing motions. The energy is

stored in highly sheared magnetic structures called current sheets, in which magnetic

energy is dissipated and magnetic field lines reconnect on a time scale of ∼ 0.1 s.

The newly reconnected field lines are strongly bent, and their tension force will drive

bi-directional Alfvénic outflows. Preexisting flux ropes3 will be released to the in-

terplanetary space as well as newly formed plasmoids (flux ropes in 3D), leading to

the eruption of CMEs, which drive shocks accelerating particles through the diffusive

shock acceleration (DSA) (e.g., Drury, 1983). Using imaging and Doppler observa-

tions, reconnection inflows (e.g., Yokoyama et al., 2001) and outflows (e.g., Innes

et al., 2003), as well as downward plamoid ejections (Takasao et al., 2012) have been

observed. Particles are efficiently accelerated during this process. The energetic par-

ticles will precipitate along the magnetic loops to the chromosphere footpoint and

generate Hα, HXR and even γ-ray emissions. The HXR emission can heat the chro-

3A flux rope is a twisted magnetic flux tube, which is the volume enclosed by a set of magnetic
field lines that intersect a simple closed curve (Schrijver and Siscoe, 2009).
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Figure 1.2 A unified model of flares. Reproduced from Shibata et al. (1995) with
permission of AAS.

mospheric plasma so it will evaporate into the corona along the flare loops, producing

soft X-ray emission in the flare loops (see Shibata and Magara (2011) for an extensive

review).

Most of the HXR emission comes from the footpoint regions, where the plasma

density is much higher than that in the corona. But coronal HXR sources have been

observed in some solar flares. One of the best cases is the “Masuda flare” (Masuda

et al., 1994), which reveals a coronal HXR source above the soft X-ray flare loops.

One similar event studied by Krucker and Battaglia (2014) is shown in Figure 1.1

(d), where the coronal HXR source (blue contours) is clearly separated from the soft

X-ray flare loop source (green contours). This suggests that the electron acceleration

is above the flare loops and most likely associated with the reconnection processes.

Another kind of coronal HXR source is the double coronal sources (Sui and Hol-

man, 2003) shown in Figure 1.3. HXR sources appear to be located below and above
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Figure 1.3 Centroids of emission at different energies showing the energy loss with
distance away from the acceleration point during a flare on 2002 April 15. The loop-
top source is below these sources. Reproduced from Raymond et al. (2012) with
permission of Springer.

one reconnection X-line, and the spectrum becomes softer away from the central

point, suggesting energy loss away from the energy release and particle acceleration

region (Sui and Holman, 2003; Liu et al., 2008; Chen and Petrosian, 2012; Liu et al.,

2013b). The highest temperature is above the loop-top X-ray source and well below

the reconnection site, suggesting that primary plasma heating and particle acceler-

ation occur in the reconnection outflow region (Liu et al., 2013b). While it is now

widely acknowledged that the particle acceleration process is associated with magnetic

reconnection, there is no agreement on the dominant acceleration mechanism (Miller

et al., 1997; Zharkova et al., 2011).

1.3 Particle acceleration mechanisms

Below is a short review of available acceleration mechanisms, including sub-

Dreicer and super-Dreicer electric field, collapsing magnetic trap, termination shocks
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driven by the reconnection outflow, MHD turbulence generated by fast reconnection

outflows. Magnetic reconnection will be introduced in the next chapter.

The Dreicer field model considers electron acceleration under a large-scale

electric field E (Zharkova et al., 2011). In one dimension, the equation of motion for

a single particle is

dv

dt
=

eE

m
− νev, (1.1)

where νe ∼ T
−2/3
e ∼ v−3 is the Coulomb collision frequency with ambient plasma

(see Appendix A). Then the equation can be rewritten as

m
dv

dt
= e

�
E − ED

�vth
v

�2�
, (1.2)

where vth is the electron thermal speed, and the Dreicer field is

ED = meνe(vth)vth/e ≈ 10−8n(cm−3)/T (K) V cm−1. (1.3)

For coronal density n ∼ 109 cm−3 and temperature T = 106 K, ED ∼ 10−5 V cm−1. If

E < ED (sub-Dreiser), only high energy particles (v > vc = vth
�

ED/E) can be accel-

erated, which will reduce the drag force due to collisions, yielding stronger acceleration

and eventually runaway acceleration. Particles with v < vc are decelerated and re-

main collisionally redistributed maintaining Maxwellian distribution (Zharkova et al.,

2011). The sub-Dreicer model was invoked to explain the thermal+nonthermal elec-

tron distributions (Benka and Holman, 1994), where the electric field is due to frag-

mented current/return current pairs and finite resistivity in solar corona. If E > ED
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(super-Dreicer), all particles with v > vth are accelerated, leading to efficient accel-

eration of all electrons. This model has been invoked in single reconnection X -line

acceleration, where reconnection electric field ∼ 2 V cm−1 (Zharkova et al., 2011),

much larger than the Dreicer field. The problem with this scenario is that this region

is much smaller than the whole flare region, so it will not be able to accelerate a large

portion of electrons in the flare region. As shown in a series of papers, a considerable

portion (> 10%) of electrons are accelerated in the solar flare regions (Krucker et al.,

2010; Krucker and Battaglia, 2014; Oka et al., 2015). Besides, reconnection in solar

flares should involve a large number of X -lines and magnetic island structures. This

is discussed in the next chapter.

The standard flare model (e.g. Shibata et al., 1995) suggests that a termination

shock (TS) can form when the reconnection outflow moves toward the dense and

closed magnetic loops. Figure 1.4 illustrates the structure of a TS in solar flares. A

TS accelerates particles through the diffusive shock acceleration (DSA) mechanism

(see an extensive review by Drury (1983)). The TS acceleration has been invoked

to explain the ≥ 300 keV spectral hardening in solar flares (Li et al., 2013) and the

shock-induced type-II radio bursts (Kong et al., 2015). Chen et al. (2015) made

significant progress by using high cadence radio observations from the Very Large

Array (VLA) to identify a solar flare termination shock. The authors found that the

formation and destruction of the TS are correlated with the HXR flux, suggesting

that the TS is efficient at accelerating electrons to nonthermal energies.

Additionally, particles are trapped by the collapsing magnetic field lines from

the reconnection region. The collapsing magnetic traps can accelerate particles through

9



both Fermi acceleration and betatron acceleration. This can be seen from consider-

ing the conservation of magnetic moment and the longitudinal invariant of a charged

particle moving in a B field. Assuming a charged particle moving in a smooth B

field, then the parallel and perpendicular component of the particle momentum vary

as

p1⊥ = p0⊥
�
B/B0, p1� = p0�(L1/L0)

−1, (1.4)

where p0� are p0⊥ are the particle’s initial momenta, p1� are p1⊥ are the particle’s

momenta at a later time, L0 is the initial length of a field line, L1 is the length of the

field line at a later time, B0 is the initial magnetic field strength, B is the magnetic

field strength at a later time. As the field lines shorten, p1� increases, which is a

Fermi -type mechanism (Fermi, 1949). At the same time, the field lines collapse to

the flare loops where magnetic field becomes stronger, therefore p1⊥ increases, which

is the betatron acceleration.

Turbulence acceleration/stochastic acceleration has been proposed to explain

the above-the-loop-top HXR sources. Turbulence or plasma waves generated by the

Alfvènic reconnection outflows will cascade to smaller scales, during which turbulence

can heat the plasma and accelerate particles (Hamilton and Petrosian, 1992; Miller

et al., 1996; Chandran, 2003; Petrosian and Liu, 2004; Petrosian et al., 2006). Fig-

ure 1.5 (a) shows a schematic representation of turbulence acceleration model. Most

acceleration occurs at the reconnection outflow region, which appears to be consistent

with the observations (Liu et al., 2013b). This model requires an ad hoc injection of
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Figure 1.4 Illustration of the interaction of collapsing magnetic traps. FOCS indi-
cates a fast oblique collisionless shock. HTTCS indicates a high-temperature turbu-
lent current sheet. Reproduced from Somov and Kosugi (1997) with permission of
AAS.

plasma waves (Zharkova et al., 2011), which is not well-justified. Both MHD (Huang

and Bhattacharjee, 2016) and kinetic simulations (Daughton et al., 2011) do show

self-generated plasma turbulence in 3D reconnection layer (Figure 1.5 (b)), which

generates multiple secondary current sheets. This poses the question of whether the

energy dissipation and particle acceleration occur dominantly through the current

sheet or wave-particle interaction in a plasma turbulence. Recent 3D kinetic simula-

tions of collisionless turbulence show that a large number of current sheets form in

the simulation (Figure 1.5 (c)) (Roytershteyn et al., 2015), and the current sheets

dissipate ∼ 50% of the total energy conversion (Wan et al., 2015). Very likely cur-

rent sheets and turbulence are tightly related to each other and studying the role

of reconnection in turbulence energy dissipation and the role of turbulence on the

reconnection processes may provide us a unified picture in the future.

11



(a) (b)

(c)

Figure 1.5 (a) A schematic representation of the reconnecting field forming closed
loops and coronal open field lines. The red dots indicate the plasma turbulence.
Reproduced from Petrosian (2012) with permission of Springer. (b) Turbulent cur-
rent layer from a 3D kinetic simulation of magnetic reconnection. Reproduced
from Daughton et al. (2011) with permission of Nature Publishing Group. (c) Vol-
ume rendering of current densities in a 3D simulation of kinetic turbulence, showing
the formation of current sheets. Reproduced from Roytershteyn et al. (2015) with
permission of the Royal Society.

1.4 Particle properties during solar flares

Observations not only can associate the acceleration processes with magnetic

reconnection but also place several quantitative constraints on the accelerated par-

ticle properties, including particle energy spectrum, nonthermal population, energy

partition between electrons and ions, ion composition, etc.

The electron energy spectrum inferred from the HXR observations is usually

power-law f(E) ∼ E−p or double power-law (Figure 1.6). The power-law index
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p > 2. One of the key problem is to decide the low-energy cutoff Ec of the power-law

∼ E−1.5 ∼ E−2.45

Figure 1.6 Electron energy flux spectrum nV f(E) versus electron energy E for the
X4.8 solar flare at 2002 July 23. The energy spectrum f(E) = dN(E)/dE ∼ E−2 and
∼ E−2.95 for the double power-law spectrum. Reproduced from Piana et al. (2003)
with permission of AAS.

spectrum, so that we can better estimate how many particles and how much energy

are contained in the power-law part (Kontar et al., 2011). Ec is typically ≤ 20 keV and

sometimes as low as ∼ 12 keV (Kontar et al., 2008). For some of the above-the-loop-

top HXR source regions, the estimated nonthermal electron density is comparable

with ambient thermal proton density, suggesting that the entire electron population

within the above-the-loop-top source can be energized (Krucker and Battaglia, 2014).

This highly efficient acceleration challenges the shock acceleration scenario, because

we only expect < 10% of nonthermal particles in shock acceleration (Neergaard Parker

and Zank, 2012). In large flares, the electron acceleration rate can reach ∼ 1036 s−1,

which generates a large current ∼ 1017 A and a current density j = I/S ≈ 0.3 A

cm−2 (Zharkova et al., 2011). Observations do show electric currents in the flare

region but with a weaker current density ≤ 0.05 A cm−2 (see the next section).
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There are fewer constraints on the ion energy spectrum than that on electrons,

as only a handful of γ-ray lines with sufficient statistics exist (Lin, 2011). The derived

ion spectra using these γ-ray line observations are unbroken power laws down to ∼1

MeV. The power-law index is about −4 (Lin et al., 2003). The estimated total energy

contained in the energetic ions is comparable to the energy contained in energetic

electrons > 20 keV (Lin et al., 2003). Thus, energetic ions also contain a substantial

fraction of the total energy released in the flare (Ramaty et al., 1995; Lin et al., 2003).

Shih et al. (2009) showed that the fluence of the 2.223 MeV γ-ray lines (by ≥ 30

MeV ions) is correlated to the > 0.3 MeV HXR fluence (by ≥ 0.3 MeV electrons),

suggesting that the same mechanism accelerates ≥ 30 MeV ions and ≥ 0.3 MeV

electrons.

The abundances of heavy ions put crucial constraints on acceleration mech-

anisms. α-particles, 3He, Ne, Mg and Fe are over-abundant compared with normal

coronal compositions (Vilmer et al., 2011), suggesting that the acceleration mecha-

nism preferentially accelerates these particles. For a long time, wave-particle reso-

nance in turbulence acceleration appeared to be the only plausible explanation for

this observation (Miller et al., 1997). Recent simulations involving reconnection show

heavy ions gain more energy when they are “picked-up” by the reconnection out-

flow (Drake et al., 2009a,b; Drake and Swisdak, 2014; Knizhnik et al., 2011), suggest-

ing reconnection may be an alternative explanation of the heavy ion abundance.
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1.5 Coronal magnetic field and electric currents

The coronal magnetic field is essential for understanding the magnetic energy

storage, release and transport in solar active regions. The coronal magnetic field, to

a very good approximation, is a force-free field (Wiegelmann and Sakurai, 2012). We

start from the momentum of equation of the ideal MHD equations

ρ

�
∂v

∂t
+ v ·∇v

�
= −∇p+

j ×B

c
, (1.5)

which can be normalized as

ρ̃

�
v0
vA

∂ṽ

∂ t̃
+

v20
v2A

ṽ · ∇̃ṽ

�
= −β

2
∇̃p̃+ j̃ × B̃, (1.6)

where the length is normalized to l0, the magnetic field B is normalized to B0, the

density ρ is normalized to ρ0, the time scale is normalized to l0/vA, vA = B0/
√
4πρ0

is the Alfvèn speed, the scalar pressure p is normalized to p0, j is normalized to

j0 = cB0/4πl0, the plasma-beta β = 8πp0/B
2
0 . In the solar corona, the flow is sub-

Alfvènic except in the reconnection outflow region, so v0/vA � 1. The plasma β � 1

in the lower region of the solar corona (Gary, 2001). Then, j × B = 0, i.e. the

force-free approximation is valid, resulting in the force-free equation (Wiegelmann

et al., 2015).

∇×B = α(x)B, (1.7)
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where the spatial-dependent α(x) scales as 1/l. It may be interpreted as the magnetic

twist per unit length. The force-free equation indicates

B ·∇α = 0, (1.8)

so α is constant along field lines. If α is globally constant, i.e. x-independent, we call

the force-free field model the linear force-free field (LFFF). If α varies with x, we call

it nonlinear force-free field (NLFFF). Equation 1.7 and Equation 1.8 can be solved

numerically using the measured vector magnetic field at the photosphere as boundary

conditions. The left panel of Figure 1.7 shows the selected field lines extrapolated

from the NLFFF magnetic field (Sun et al., 2012). Knowing B, the current density

can be easily calculated by ∇×B. The right panels of Figure 1.7 show the vertical

and horizontal current densities. The vertical current switch directions across the

polarity inversion line (PIL), and the horizontal current density peaks in the flux

ropes, suggesting the current is along the magnetic loops. The current density shows

complex patch structures and is very dynamic (Sun et al., 2012). The time-varying

electric current can induce time-dependent magnetic field and hence electric field,

which accelerates charged particles.

1.6 Problems to be addressed

In this thesis, I address two major topics on particle acceleration during solar

flares. The first topic is particle acceleration by the electric field generated by large

scale time-dependent electric currents in solar flare regions. Our model provides a new
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Figure 1.7 NLFFF extrapolation and current densities for AR 11158 on 2011 Febru-
ary 14. Left: selected field lines from the NLFFF extrapolation plotted over a cutout
from the vertical field map. The lines are color-coded by the vertical current density
at their footpoints (see the color bar); red field lines correspond to strong current
density. Top right: vertical current density Jz derived from the vector magnetogram.
Bottom right: the horizontal current density Jh distribution on a vertical cross sec-
tion as derived from NLFFF extrapolation. Reproduced from Sun et al. (2012) with
permission of AAS.

mechanism for particle energization during solar flares. The energized particles could

provide a “seed” population for diffusive shock acceleration by CME-driven shocks.

The second topic is to examine particle acceleration by magnetic reconnection. Our

results show power-law formation in kinetic simulations of magnetic reconnection

in nonrelativistic plasma for the first time. This could explain the highly efficient

electron and ion acceleration during solar flares.

In Chapter 2, I will briefly introduce the reconnection theory, including the

Sweet-Parker model, Petscheks fast reconnection model and the Hall reconnection

model. I will emphasize the plasmoid instability that breaks an elongated current

sheet into multiple magnetic islands, which are efficient in accelerating particles to
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nonthermal energies (e.g. Drake et al., 2006). I will discuss particle acceleration

mechanisms in magnetic reconnection and point out unsolved problems in the research

on particle acceleration during magnetic reconnection.

In Chapter 3 and Li et al. (2014), we investigate charged particle behavior in

a chaotic magnetic field, which is generated from one or multiple asymmetric wire-

loop-current-systems (WLCSs). We find that particle transport in one WLCS is a

sub-diffusion process due to the trapping of the magnetic field. In contrast, parti-

cle transport in 8 WLCSs is a diffusion process as particles are not trapped by one

WLCS but jump between different WLCSs. When including time-dependent electric

currents, both electrons and protons are accelerated to develop power-law energy dis-

tribution with power-law index < 1, which is consistent with the model of particle

acceleration by multiple reconnection current sheet (Dauphin et al., 2007). The spec-

tra get harder with stronger electric current and faster varying electric current. The

maximum energy reaches to 1 − 10 MeV for both electrons and protons, which can

provide a seed population for the CME-driven shock acceleration.

In Chapter 4 and Li et al. (2015), we carried out kinetic simulations in a non-

relativistic plasma with low plasma β. The initial current sheet breaks into a chain

of magnetic islands, which interact and merge with each other. Magnetic energy is

converted into plasma kinetic energy during this process. The results show that ac-

celerated nonthermal electrons contain more than half of the total electrons, and their

distribution resembles a power-law energy distribution f(E) ∼ E−1 when particle loss

is absent. By ensemble averaging the electron guiding center drift motions, we reveal

the main acceleration mechanism as a Fermi -type acceleration accomplished by the
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particle curvature drift along the electric field induced by the reconnection outflows.

This is in contrast to the high-β simulations, where no obvious power-law spectrum

is obtained (e.g. Drake et al., 2010).

In Chapter 5 and Li et al. (2016), we perform 2D kinetic simulations of mag-

netic reconnection in a nonrelativistic proton-electron plasma with a range of plasma

βe = βi = 0.007 − 0.2. This work is an extension of the earlier work of Li et al.

(2015). We achieve lower plasma β condition by either increasing the magnetic field

strength (or equivalently decreasing the particle density), or by decreasing the plasma

temperature. We compare the energy conversion and particle acceleration for sim-

ulations with different plasma β. We find that both nonthermal electrons and ions

develop power-law energy distributions with power-law index p ∼ 1 in the low-β

regime (βe ≤ 0.02). Through tracking a large number of particles we find that both

electrons and ions get efficiently accelerated when they are drifting along the electric

field induced by the bulk flow in the X -type region, anti-reconnection region where

two islands are merging, and contracting magnetic islands. Furthermore, ions gain

energy when they are “picked-up” by the reconnection outflow. This initial fast en-

ergy gain makes ions more energetic than electrons, so they can be accelerated more

efficiently through the Fermi mechanism later in the simulation. This provides a

good explanation on why ions gain more energy than electron in our simulations.

By studying j ·E, we identify the major acceleration mechanism is through particle

curvature drift along the motional electric field. Particle ∇B drift, polarization drift,

parallel electric field and non-gyrotropic pressure tensor all play important role in

different acceleration regions at different times.
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In Chapter 6, we perform a series of kinetic simulations with different guide-

field strength. We find that the energy conversion becomes less efficient as the guide

field increases. This is due to the fact that the plasma becomes less compressible when

there is a guide field. Reconnection with no guide field preferentially accelerate ions,

and reconnection with a strong guide field preferentially accelerate electrons. Both

electrons and ions develop into power-law energy distributions, which become steeper

as the guide field gets stronger. Perpendicular acceleration is dominant for electrons in

the cases with a weak guide field, and the parallel acceleration gets more important as

the guide field increases. However, the perpendicular acceleration is always dominant

for ions. The drift-current analysis shows that the dominant acceleration mechanism

for ions is the polarization drift along the motional electric field.
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CHAPTER 2

MAGNETIC RECONNECTION

Magnetic reconnection is a fundamental plasma process that rearranges the

magnetic field topology, accompanied by the release of magnetic energy and particle

energization (Priest and Forbes, 2000; Zweibel and Yamada, 2009; Yamada et al.,

2010). It occurs ubiquitously in laboratory, space and astrophysical magnetized plas-

mas. An important unsolved problem is the acceleration of nonthermal particles in

the reconnection region. Magnetic reconnection has been suggested as a primary

mechanism for accelerating nonthermal particles in solar flares (Masuda et al., 1994;

Krucker et al., 2010; Lin, 2011), Earth’s magnetosphere (Øieroset et al., 2002; Fu

et al., 2011; Huang et al., 2012), sawtooth crash of tokamaks (Savrukhin, 2001), and

high-energy astrophysical systems (Colgate et al., 2001; Zhang and Yan, 2011; Arons,

2012). In this chapter, I will introduce the reconnection theories starting from the

Sweet-Parker model, and proceed with Petschek’s fast reconnection model and Hall

reconnection model. Then, I will show that the plasmoid instability will lead to the

formation of a large number of magnetic islands in high-Lundquist-number plasma

such as solar corona, driving current sheets to kinetic scales. I will review current
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understandings of particle acceleration during reconnection and conclude by pointing

out the problems to be solved.

2.1 Magnetic reconnection theory

If a plasma is perfectly conducting (conductivity σ → ∞), it obeys the ideal

Ohm’s law E = −(v × B)/c. The magnetic flux through any surface bounded by

contour C moving with the fluid is conversed, and the magnetic field lines are frozen

into the plasma (Alfvén, 1942; Zank, 2014). No reconnection of magnetic field lines

can occur. If we introduce non-ideal effect R to the Ohm’s law,

E + (v ×B)/c = R, ∇×R �= 0, (2.1)

the frozen-in condition will be broken. The generalized Ohm’s law includes several

non-ideal terms.

me

ne2

�
∂j

∂t
+∇ ·

�
jv + vj − jj

ne

��
= E +

v ×B

c
− j ×B

nec
+

1

ne
∇ · Pe − ηj, (2.2)

where Pe is the electron pressure tensor, η is the plasma resistivity. The term on the

left is due to the electron inertia; the third term on the right is the Hall term; the

fourth term on the right is the pressure term, and the last term is the resistive term,

which is included in the Sweet-Parker reconnection model. The other terms become

important when kinetic effects cannot be neglected in kinetic scales1.

1These scales includes: the ion inertial length di, the electron inertial length de, the Debye length
λD, the ion gyroradius ri and the electron gyroradius re. See Appendix A for their definitions and
their values in solar corona plasma.
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2.1.1 Sweet-Parker model

The first reconnection quantitative model is from Sweet (1958) and Parker

(1957b), well-known as the Sweet-Parker (SP) model. This model focuses on two-

dimensional steady-state reconnection in an incompressible plasma (Birn and Priest,

2007). In this model, the antiparallel magnetic fields are carried toward each other

2LCS

2δvA vA

vin

vin

Figure 2.1 Sweet-Parker magnetic reconnection model. The blue region is the recon-
nection current sheet with a length 2LCS and a thickness 2δ. vin is the inflow speed.
vA is the Alfvén speed. The inflow magnetic field is Bx = ±B0.

with speed vin. The magnetic field lines reconnect in a current sheet with a length

2LCS and a thickness 2δ. This drives bi-directional reconnection outflows vout. Con-

sidering the assumption of steady-state and impressibility, the continuity equation

dρ/dt+ ρ∇ · v = 0 yields ∇ · v = 0. Then,

vin
vout

=
δ

LCS

. (2.3)
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Including finite resistivity in the Ohm’s law, E = −(v ×B)/c + ηj, where η is the

resistivity. Substituting j to the Faraday’s law, we get the resistive induction equation

∂B

∂t
= ∇× (v ×B) +

ηc2

4π
∇2B. (2.4)

In a steady state, the left term is 0, the right terms should balance each other, leading

to

vin ∼ ηc2/(4πδ). (2.5)

The pressure balance of the inflow magnetic pressure and the outflow dynamic pres-

sure yields B2
0/8π = nmiv

2
out/2, which leads to

vout =
B0√
4πnmi

= vA, (2.6)

where vA is the Alfvén speed of the inflow plasma. Using Equation 2.3, Equation 2.5

and Equation 2.6, the reconnection rate ER becomes

ER ≡ vin
vA

=
δ

LCS

= S−1/2, (2.7)

where S = 4πLCSvA/(ηc
2) is the Lundquist number, which is the ratio of the global

Ohmic diffusion time τdiff = 4πL2
CS/(ηc

2) to the Alfvén time τA = LCS/vA (Zweibel

and Yamada, 2009). The reconnection time scale is a geometric mean of these two

time scales,

τrec = τ
1/2
diff τ

1/2
A = S1/2τA. (2.8)
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Most astrophysical plasmas have very large S. For example, in solar corona, S ∼ 1012

and τA ∼ 1 s. Then, τrec ∼ 106 s, much larger than the typical solar flare time scales

102−3 s (Lin, 2011). So the reconnection rate of the Sweet-Parker model is too small

to explain the solar flare observations.

2.1.2 Petschek’s fast reconnection model

The Sweet-Parker model is slow because of the large aspect ratio of the current

sheet LCS/δ � 1. Petschek (1964) developed a model with a much shorter current

sheet shown in Figure 2.2. The expense is to introduce four standing slow-mode shocks

bounding the reconnection exhausts. Instead of passing through the resistive current

layer, most plasma pass through the shocks and get heated at the shocks. This model

yields a maximum reconnection rate π/(8 lnS). For solar corona plasma condition,

it yields a reconnection time scale τrec ∼ 100 s, consistent with observations.

2δ
2l

2L

Figure 2.2 Petschek’s magnetic reconnection model. The blue region is the recon-
nection layer with a length 2l and a thickness 2δ. The dashed lines are standing
slow-mode shocks. L is the system size. l � L in this model.
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However, numerical simulations have failed to validate Petschek’s model (Biskamp,

1986; Uzdensky and Kulsrud, 2000; Malyshkin et al., 2005), unless there is strongly

enhanced resistivity at the reconnection X -point (Sato and Hayashi, 1979; Ugai, 1995;

Scholer, 1989; Erkaev et al., 2000; Biskamp and Schwarz, 2001; Malyshkin et al., 2005).

Without the enhanced local resistivity, the current sheet will evolve like the Sweet-

Parker current layer. Kinetic-scale instabilities may give anomalously enhanced re-

sistivity in the current sheet by driving micro-turbulence (Büchner and Elkina, 2005,

2006). This requires large 3D kinetic simulations that links the kinetic-scale instabil-

ities and the MHD-scale dynamics (Loureiro and Uzdensky, 2016).

2.1.3 Collisionless reconnection–Hall physics

In high-S plasma, the thickness of the current sheet δ can be smaller than the

ion inertial length di = c/ωpi = c
√
mi/

√
4πne2, according to Equation 2.7. The Hall

term in Equation 2.2 will be larger than the ideal term v ×B/c.

|v ×B|
|j ×B|/ne ∼ vAB

cB2/4πneδ
=

δ

di
< 1. (2.9)

In this region, j/ne ∼ ve exceeds v ∼ vi so that ve exceeds vi, which implies that

the electron motion and ion motion decouple. Figure 2.3 shows the schematic of the

structure of this region. Approaching this region, ions are diverted into the outflow

direction, forming the ion diffusion region with a thickness di. The electrons are still

frozen-in to the magnetic field and continue move to smaller scales. The electrons

eventually decouple from magnetic field when they approach the de scale, where they
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are diverted to the outflow direction. The different motions of electrons and ions

generate in-plane current loops, yielding a quadruple structure of the out-of-plane

magnetic field By. Within the electron diffusion region, the outflow flux is (Dahlin,

�
�

�
�

�
�

�
�

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

di de

z

x

Figure 2.3 Schematic of the structure of the dissipation region. The gray shaded
region is the ion diffusion region with a thickness ∼ di = c/ωpi. The white box is
the electron diffusion region with a thickness ∼ de = c/ωpe. The red dashed line is
the electron flow. The blue dashed line is the ion flow. The � and ⊗ symbols are
the out-of-plane magnetic field direction. The dash-dotted line is the reconnection
separatrix.

2015)

δvout ∼ δ

�
j

ne

�
∼ δ

�
cB0

4πδ

�
1

ne
∼ vAdi. (2.10)

So the outflow flux is independent of the current sheet thickness, which effectively

opens up the outflow region and enhances the reconnection rate of the Sweet-Parker

model. Note that the Hall term itself cannot break the magnetic field line because it

does not give energy dissipation. The other non-ideal terms in the generalized Ohm’s

law are required to break the field line, leading to dissipation.
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2.1.4 The plasmoid instability

The Sweet-Parker model assumes that the current sheet is stable, but early

simulations show that the SP-like current sheet is unstable to the plasmoid (magnetic

island) formation (Biskamp, 1986; Lee and Fu, 1986; Yan et al., 1992). Bulanov et al.

(1979); Biskamp (1986) argued that the large-aspect-ratio (LCS/δ > 100, S ∼ 104)

current sheets was unstable to a tearing mode instability (Furth et al., 1963; Coppi

et al., 1976), leading to plasmoid formation. It is until recently that a linear theory

of plasmoid instability in SP-like current sheet is developed by Loureiro et al. (2007).

Below is a summary of this theory with reference to Loureiro et al. (2007); Baalrud

et al. (2012); Comisso and Grasso (2016).

The two-dimensional (∂z = 0) reduced MHD equation in an incompressible

plasma is

∂tψ + v ·∇ψ = ηj + E0, (2.11)

∂tω + v ·∇ω = B ·∇j, (2.12)

where ψ(x, y, t) is the magnetic flux function, ω is the z-component plasma vorticity,

B is the magnetic field, v is the velocity field, j is z-component of the electric current

density, and E0 is the equilibrium electric field.

B = ∇ψ × êz, v = êz ×∇φ; (2.13)

j = ∇2ψ, ω = ∇2φ, (2.14)
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where φ(x, y, t) is the stream function. The current sheet is along the y-direction with

an equilibrium flow profile

v0 =





(−Γ0x,Γ0y) |x| ≤ x0 (inside the current sheet);

(−Γ0x0, 0) x ≥ x0;

(Γ0x0, 0) x ≤ −x0,

(2.15)

where Γ0 = vA/LCS, and LCS is the half-length of the current sheet. So that outflow

is Alfvènic. The stream function is then

φ0(x, y) =





Γ0xy |x| ≤ x0;

Γ0x0y x ≥ x0;

−Γ0x0y x ≤ −x0,

(2.16)

The equilibrium magnetic field is assumed to be (0, B0y(x)). When |x| ≤ x0, B0y

satisfies

δ2
dB0y

dx
+ xB0y =

E0

Γ0

. (2.17)

One solution of B0y that switches direction at x = 0 is

B0y(ξ) = αe−ξ2/2

� ξ

0

ez
2/2dz, (2.18)

according to Equation 2.11, where ξ = x/δ, α = E0/Γ0δ. To match with the B0y

outside of the region |x| ≤ x0, a natural condition is that B0y has its maximum or
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minimum at ±x0, so that

∂xB0y|±x0 = 0 ⇒ ξ0 = 1.307. (2.19)

When x ≥ x0 or x ≤ −x0, B0y = ±E0/Γ0x0, yielding α = 1.307. Considering small

perturbation to the system,

ψ(x, y, t) = ψ(x) + ψ1(x, t)e
ik(t)y; (2.20)

φ(x, y, t) = φ(x, y) + φ1(x, t)e
ik(t)y, (2.21)

where k(t) = k0 exp(−Γ0t), then

∂tψ1 + ikB0yφ1 − Γ0x∂xψ1 = η(∂2
x − k2)ψ1; (2.22)

(∂2
x − k2)∂tφ1 + 2Γ0k

2φ1 − Γ0x∂x(∂
2
x − k2)φ1 = ik

�
d2B0y

dx2
− B0y(∂

2 − k2)

�
ψ1,

(2.23)

We seek solutions of exponential growing modes.

ψ1(x, t) = −iΨ(x) exp(γt), φ1(x, t) = Φ(x) exp(γt), (2.24)
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with the growth rate γ � Γ0 = vA/LCS. In this limit, k(t) ≈ k0, and the terms

proportional to Γ0 can be neglected. Then,

λΨ+ B0yΦ =
1

κ
(Ψ�� − κ2�2Ψ); (2.25)

λ(Φ�� − κ2�2Φ) = B0y(Ψ
�� − κ2�2Ψ)− B��

0yΨ, (2.26)

where the derivatives are with respect to ξ, and

λ ≡ γ

k0vA
, � ≡ δ

LCS

, κ ≡ k0LCS. (2.27)

For elongated current sheet, � � 1. We also assume λ � 1, κ � 1, κ� � 1 and

λκ � 1. As in the standard tearing mode theory (Coppi et al., 1976), the spatial

domain is separated into the outer region (ξ ∼ 1) and the inner region (ξ � 1).

In the outer region, the system is “ideal”. Equation 2.25 and Equation 2.26

reduce to

Φ =
λ

B0y

Ψ; (2.28)

d2Ψ

dξ2
=

�
B��

0y

B0y

+ κ2�2
�
Ψ. (2.29)

Considering κ2�2 � 1, Equation 2.29 is solved perturbatively (Loureiro et al., 2007).

Ψ±(ξ) =





±αΨ(0)
κ�

B0y(ξ)− αΨ(0)B0y

� ξ

±ξ0

dz
B2

0y(z)
|ξ| ≤ ξ0;

αΨ(0)
κ�

exp[κ�(ξ0 ∓ ξ)] |ξ| ≥ ξ0,

(2.30)
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where ± indicating solution for ξ > 0 or ξ < 0. The solution has a discontinuous

derivative at ξ = 0. The jump of this derivative gives the tearing stability parame-

ter (Furth et al., 1963; Loureiro et al., 2007).

Δ� =
1

Ψ(0)
[Ψ�(+0)−Ψ�(−0)] ≈ 2α2

κ�
. (2.31)

In the inner region, where |ξ| � 1, we can assume B0y ≈ αξ and ∂ξ � 1.

Equation 2.25 and Equation 2.26 reduce

λΨ+ αξΦ =
1

κ
Ψ��; (2.32)

λΦ�� = αξΨ��. (2.33)

The resulted dispersion relation is (Coppi et al., 1976; Loureiro and Uzdensky, 2016;

Comisso and Grasso, 2016)

Λ5/4Γ
�
(Λ3/2 − 1)/4

�

Γ [(Λ3/2 + 5)/4]
= − 8

π
(κα)−1/3Δ�; (2.34)

where Γ is the gamma function and Λ = λα−2/3κ1/3. Combining with Equation 2.31,

Λ5/4Γ
�
(Λ3/2 − 1)/4

�

Γ [(Λ3/2 + 5)/4]
= − 8

π
(κα)−1/32α

2

κ�
. (2.35)
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Two limits of this equation are

γ

Γ0

≈
�
− 16Γ(5/4)

πΓ(−1/4)

�4/5

α2κ−2/5�−4/5 ≈ 1.63κ−2/5�−4/5, when Λ � 1; (2.36)

γ

Γ0

≈ (ακ)2/3 −
√
π

3α
κ2�, when Λ → 1−. (2.37)

The maximum growth rate lies between the two limits. γ in Equation 2.37 peaks at

κmax ∼ �−3/4 � 1. Recall that � = δ/LCS = S−1/2 for a SP-current sheet,

kmaxLCS ∼ S−3/8; (2.38)

γmax

Γ0

∼ �−1/2 ∼ S1/4. (2.39)

For a high-S plasma, the instability grows extremely violent compared with the

Alfvénic time scale τA = LCS/vA = Γ−1
0 . The scaling of the wavenumber and growth

rate has been validated by numerical simulations (Samtaney et al., 2009; Ni et al.,

2010; Loureiro et al., 2013). Equation 2.38 predicts the number of plasmoid scales as

N ∼ S3/8 at the linear stage. Numerical simulations have shown that N ∼ S in the

nonlinear regime (Cassak et al., 2009; Huang and Bhattacharjee, 2010). In the non-

linear regime, plasmoids coalesce with each other and are ejected and convected with

the reconnection outflow. Meanwhile, secondary current sheets are expected to form

between the plasmoids, and new plasmoids are generated constantly in the recon-

nection layer (Huang and Bhattacharjee, 2010; Loureiro and Uzdensky, 2016). This

gives rise to a hierarchical, fractal-like plasmoid structure (Shibata and Tanuma, 2001;

Daughton et al., 2009b), which ends when the local current sheet is marginally stable
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(the growth rate of the plasmoid instability is comparable to the reciprocal Alfvènic

time scale) and that their length yields a critical Lundquist number Sc = 4πLcvA/ηc
2.

The number of plasmoid then scales like L/Lc ∼ S/Sc. The thickness of the local

Figure 2.4 Schematic view of fractal reconnection. Reprinted from Shibata and
Tanuma (2001) with permission of Springer.

current sheet and the current density scale like

δc =
Lc√
Sc

= ηc2
√
Sc

4πvA
= δSP

�
Sc

S
; (2.40)

j =
c

4π

B

δc
=

BvA

ηc
√
Sc

=
c

4π

BS

L
√
Sc

, (2.41)

where δSP is the thickness of the Sweet-Parker current sheet. Then, the reconnection

electric field is ηj = BvA/(c
√
Sc), and the normalized reconnection rate

ER = ηj/(BvA/c) = S−1/2
c (2.42)
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Both heuristic argument (Biskamp, 1986) and numerical simulations (Lee and Fu,

1986; Lapenta, 2008; Bhattacharjee et al., 2009; Cassak et al., 2009; Huang and Bhat-

tacharjee, 2010; Loureiro et al., 2012) have shown that Sc ∼ 104, so the reconnection

rate at high-S regime is ∼ 0.01, much faster than the Sweet-Parker reconnection.

The continuous formation of current sheet between the plasmoids will lead

to the breakdown of the MHD approximation when the current sheet thickness

approaches the ion kinetic scale (Daughton et al., 2009b; Ji and Daughton, 2011;

Daughton and Roytershteyn, 2012). Since the current sheet thickness δ/δSP ∼

S−1/2 ∼ N−1/2, δ can reach the ion kinetic scale much faster than would be expected

for the original Sweet-Parker current sheet. Both two-fluid simulation (Ma and Bhat-

tacharjee, 1996; Cassak et al., 2005) and kinetic simulation (Daughton et al., 2009a)

have shown that the kinetic scale is the ion inertial length di for anti-parallel re-

connection. The transition to kinetic scale leads to a dramatic enhancement in the

reconnection rate (Daughton et al., 2009b), which is about 0.04–0.2 (Birn et al., 2001;

Hesse et al., 2001; Pritchett, 2001; Shay et al., 2001, 2007), compared with 0.01 in

the MHD regime. The breakdown of the MHD description at kinetic scales requires

fully kinetic simulations (see Appendix E for an introduction) to capture the plasma

dynamics.

2.2 Particle acceleration during reconnection

Charged particles are accelerated by the electric field, which can be supported

by the reconnection outflow, the divergence of the electron pressure tensor, the elec-

tron inertia and the resistivity, according to the generalized Ohm’s law in Equa-

35



tion 2.2. The acceleration mechanisms can be divided into parallel acceleration by

E� and perpendicular acceleration by E⊥.

2.2.1 Parallel acceleration

Electrons can be accelerated by E� in the electron diffusion region and the

reconnection separatrix. In the electron diffusion region, E� is supported by ∇ · Pe,

in particular, the non-gyrotropic component of Pe (Hesse et al., 2011). Pe becomes

non-gyrotropic because the electrons are demagnetized in the electron diffusion re-

gion where the particle gyroradius is large due to the weak magnetic field. However,

the electron diffusion region is only on a scale of the electron Larmor radius (Hesse

et al., 2011), so it can not accelerate a significant fraction of electrons in the whole

reconnection region. Besides ∇ · Pe, the resistive term can support E� if anoma-

lous resistivity arises due to instabilities such as the low hybrid drift instability, the

drift-kink instability and the Buneman instability (Hesse et al., 2011). Numerical

simulations (Drake et al., 2003) have shown that the Buneman instability can form

electron hole structures (low density regions) with strong localized parallel electric

field. The electron hole structures tend to distribute along the reconnection separa-

trix and have been observed in the Earth’s magnetotail reconnection (Cattell et al.,

2005). The arising of the Buneman instability is due to electron beams when they are

streaming into the diffusion region along the reconnection separatrix (Drake et al.,

2003). The streaming electrons can be accelerated by the parallel electric field, which
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is due to a pseudo-electric potential2 along the reconnection separatrix (Egedal et al.,

2012).

2.2.2 Perpendicular acceleration associated with magnetic islands

The dominant perpendicular acceleration is due to the inductive electric field

−v×B/c by the reconnection outflow (Hoshino et al., 2001; Fu et al., 2006; Pritchett,

2006; Oka et al., 2010), contracting magnetic island (or plasmoid) (Drake et al., 2006)

or anti-reconnection outflow at the island coalescence region (Oka et al., 2010). A

schematic illustration of these phases is shown in Figure 2.5. Magnetic island plays a

unique role because it can trap particles, so they can interact with the reconnection

outflow several times. The island contracting is widely referred as a Fermi -type

acceleration mechanism (Fermi, 1949) for magnetic reconnection. Each time a particle

crosses the two sides of a contracting magnetic island, it collides “head-on” with the

Alfvénic outflow driven by the tension force release of the magnetic field lines. Since

an elongated current sheet can generate multiple magnetic islands (Bhattacharjee

et al., 2009; Daughton et al., 2009b), they tend to coalesce with each other through

anti-reconnection processes. Through tracking energetic electron trajectories, kinetic

simulations have suggested that the most energetic electrons are accelerated in the

magnetic island merging region (Oka et al., 2010; Nalewajko et al., 2015).

2This potential is defined as Φ�(x) =
�∞
x

E ·dl, where the integration is carried from the location
x along the magnetic field line to the ambient plasma. It measures the work done by E� on a
electron streaming along the magnetic field line. It is a pseudo-potential because the gradient of Φ�
perpendicular to the magnetic field has no physical importance (Egedal et al., 2008, 2009).
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Figure 2.5 Schematic illustration of different phase of magnetic island. The lines
with directions are the magnetic field lines. The arrows are indicate the flow direction.
The thin cross marks are the X -points of the primary reconnection sites. The thick
cross mark indicates the anti-reconnection X -point at the magnetic island coalescence
site. (a) Three primary reconnection sites forms two magnetic islands. (b) The two
islands are contracting due to magnetic tension force. (c) The two islands coalesce and
generate an anti-reconnection site. Reprinted from Oka et al. (2010) with permission
of AAS.

2.2.3 Problems to be solved

An emerging picture is that particles in a sea of magnetic islands can form

power-law energy distribution (Drake et al., 2006, 2013; Zank et al., 2014). An illus-

tration of such configuration is shown in Figure 2.6. Most previous simulations have

Figure 2.6 Diagram showing volume filling magnetic islands at a reconnection site.
Reprinted from Drake et al. (2006) with permission of Nature Publishing Group.
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focused on reconnection in a plasma with relatively high β (β > 0.1). They found

energetic particles but no obvious power-law distributions is obtained (Hoshino et al.,

2001; Drake et al., 2006, 2010; Oka et al., 2010). Meanwhile, simulations of rela-

tivistic reconnection did show nonthermal distribution but only within the localized

X -region (Zenitani and Hoshino, 2001), which is on the kinetic scale and cannot

account for the observed particle acceleration. In the past few years, kinetic simu-

lations (Guo et al., 2014; Melzani et al., 2014; Sironi and Spitkovsky, 2014; Werner

et al., 2016; Guo et al., 2015, 2016) have made significant progresses in the magnet-

ically dominated regime (magnetic energy � plasma kinetic energy). These works

showed that particles over the entire reconnection region can develop a power-law en-

ergy distribution, when the magnetization parameter σ = B2/(4πnemec
2) � 1. This

suggests that particles are more efficiently accelerated in a magnetically dominated

plasma. Recall that the plasma β � 1 in solar corona (Gary, 2001; Lin, 2011), so it

is natural to anticipate that reconnection in a low-β plasma can lead to power-law

energy distributions that could explain the solar flare observations.

Using kinetic simulation, one can identify different acceleration regions through

tracking the trajectories of a small number of energetic electrons. The limitation of

this method is that it cannot explain the bulk energization with over 50% of electrons

being nonthermal. The bulk energization suggests that the energy conversion and

particle acceleration are intrinsically related. We can use fluid quantities (e.g. current

density j) to describe the energization process by averaging the drift motions of a large

number of particles. Using this description, we expect to identify the role of parallel

acceleration and particle drift motions in different acceleration regions. The relative
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importance of different terms may vary with plasma β, mass ratio and guide-field

strength. A parametric study of these acceleration mechanisms is required.
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CHAPTER 3

PARTICLE ACCELERATION IN A

WIRE-LOOP-CURRENT-SYSTEM

In this work we study particle acceleration in a time-dependent chaotic electric

field that results from a time-dependent chaotic magnetic field. This model is based

on the observations of electric currents in the solar corona (e.g. Spangler, 2007) and

solar flare regions (Georgoulis et al., 2012; Sun et al., 2012). We construct a time-

dependent chaotic magnetic field that is due to a simple configuration of electric

currents as described in earlier works (Li et al., 2009; Ram and Dasgupta, 2010;

Dasgupta et al., 2012). We then examine charged particle acceleration in such a field

using a test-particle method. We emphasize here that we do not claim that this

simple system can represent the realistic magnetic field in the solar corona or flare

regions. Rather, we use it because it is computationally tractable.

In Section 3.1, I describe the model setup and relative parameters. In Sec-

tion 3.2, I present the results of particle motion and transport in this system by

tracking particles in a time-independent field. In Section 3.3, I present the results of

particle energization in a time-dependent field. I will discuss our results and conclude

in Section 3.4.
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3.1 The wire-loop-current-system (WLCS)

3.1.1 A single WLCS

Section 1.5 shows that the electric currents in solar active regions peak in

magnetic field loops and form complex patch structures. We build a model here to

mimic the current loops and current filaments. A wire-loop-current-system consists

of a circular loop and a straight wire with an infinite length (Figure 3.1). When the

y

z

x

Δr cross point

θ0

Figure 3.1 Illustration of the wire-loop-current-system (WLCS). The blue circle on
the x− y plane is the loop current with the origin point as its center. The red line is
the wire current, which has an arbitrary inclination angle θ0. Its cross point on the
x− y plane has a distance Δr to the origin.

wire passes through the center of the loop (Δr = 0) and is perpendicular to the plane

of the loop (θ0 = 0), the system is symmetric, and the resulting magnetic field is

non-chaotic. We plot in Figure 3.2 the Poincaré map of the magnetic field lines. A

Poincaré map, named after Henri Poincaré, is often used in dynamical systems. For

magnetic field lines, a Poincaré map is the intersection of field lines with a 2D surface

(y − z plane in Figure 3.2). For a symmetric WLCS, the Poincaré maps are closed
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loops. When the wire is tilted and/or shifted from the center of the loop, the system

becomes asymmetric, and the resulting magnetic field becomes chaotic. Figure 3.2

(b) and (c) show that the Poincaré maps break into discrete points spreading over a

broad space. The chaotic nature of the asymmetric current systems has been studied

in various literatures (Li et al., 2009; Ram and Dasgupta, 2010; Hosoda et al., 2009;

Aguirre and Peralta-Salas, 2007; Aguirre et al., 2010).

(a) (b)

(c)

Figure 3.2 Poincaré map the magnetic field lines. The field lines all start from
x0 = 0, z0 = 0, and y0 = 0.2 or 0.3. (a) Symmetric system. (b) Asymmetric system
with Δy = 0.01. θ0 = 0. (b) Asymmetric system with Δy = 0. θ0 = 1◦.

The advantage of the WLCS is that it has analytic solutions for the magnetic

and electric fields. See Section B.1 and Section B.2 for a derivation of these expres-

sions. In a cylindrical coordinate system, the electromagnetic fields of an infinite
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straight wire along the z-direction with a time-varying current are

E(ρ, t)

Gauss
= −ẑ

1

5

I/Amp

ρ/cm

πx

2
[Y0(x) sin(ωt) + J0(x) cos(ωt)] (3.1)

B(ρ, t)

Gauss
= φ̂

1

5

I/Amp

ρ/cm

πx

2
[−Y1(x) cosωt+ J1(x) sinωt] (3.2)

where E and B are in Gaussian unit, ω is the current varying frequency, x = ωρ/c,

Y0(x), Y1(x), J0(x) and J1(x) are Bessel functions. The expression uses current I in

Ampere and ρ in cm. For static current (ω = 0), Ez = 0 and Bz = I/5ρ. The fields

are cylindrically symmetric with respect to the z-axis. The only nonzero components

are Bφ and Ez. Figure 3.3 shows the spatial distribution and time evolution of Bφ and

Ez. The fields vary along the ρ-direction and change with time. The amplitude of

the field is proportional to the current I and time-varying frequency ω of the current.

In a cylindrical coordinate system, the magnetic field of a loop current is
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Figure 3.3 Electromagnetic fields of an infinite straight wire along the z-direction
with a time-varying current at ωt = 0 and π/2.
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Bρ

Gauss
=

1

5

I/Amp

c

cos θ

sin θ

1√
a2 + r2 + 2ar sin θ

�
−K(k) +

a2 + r2

r2 + a2 − 2ar sin θ
E(k)

�

(3.3)

Bz

Gauss
=

1

5

I/Amp

c

1√
a2 + r2 + 2ar sin θ

�
K(k)− r2 − a2

r2 + a2 − 2ar sin θ
E(k)

�
(3.4)

where k2 = 4ar sin θ/(a2 + r2 + 2ar sin θ), K(k) and E(k) are the complete elliptical

integral of the first kind and the second kind, r =
�
ρ2 + z2 and θ = arctan(z/ρ) are

the spherical coordinates of the point. We can then use Bρ to calculate Bx = Bρ cosφ

and By = Bρ sinφ. Figure 3.4 shows the contour plot of Bρ and Bz. The field gets

stronger close to the loop and the z-axis.

Figure 3.4 Magnetic field of a loop current in a cylindrical coordinate system. a is
the radius of the loop in cm. I0 is the normalized current in Ampere.

The electromagnetic field at one point depends on the current amplitude I, the

time-varying frequency ω and the distance to the wire current and the loop current.

We normalize the lengths with L0 and the current with I0. We set L0 = 0.01R� ≈

6.96 Mm, based on the sizes of the solar active regions, which are typically 5−102 Mm
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in diameter (van Driel-Gesztelyi and Green, 2015). We set a = L0 to mimic the flare

loops, which have lengths about the sizes of the solar active regions. We choose I0

based on the measurements of electric current density in solar active regions. Spangler

(2007) measured the electric currents in the solar corona using radio astronomical

polarization measurements of a spatially extended radio source viewed through the

solar corona. For two observed events, he found I = 2.5 × 109 A and I = 2.3 × 108

A in the solar corona. The current density can also be determined by calculating

J = ∇×B/µ0 using extrapolated magnetic field based on the vector magnetic field

measurements (Georgoulis et al., 2012; Sun et al., 2012). J on a cross section is

∼ 10− 50 mA m−2 in solar flare regions. In our model, πa2Jz ≈ 1.5 − 7.5 × 1012 A,

which is consistent with the results from Georgoulis et al. (2012) but much larger than

that in Spangler (2007). This suggests that a large variation of electric currents exists

in the solar corona and solar active regions. In our system, we consider the typical

magnetic field B ∼ 0.2I/ρ < 50 Gauss at ρ = a/2, so I < 1011 Ampere. We will

examine the particle energization in systems carrying different current I = 108− 1011

Ampere. We use the flare time scale ∼ 102−3 s (Lin, 2011) as the time varying period

of the current, noting that the currents rise with solar flares and peak during the

impulsive phase of solar flares (Sun et al., 2012). So we set ω = 0.001 − 0.1 Hz,

corresponding to a period of 62.4− 6240 seconds.

3.1.2 An ensemble of WLCSs

A single WLCS is not enough to mimic the complexity of the current system

in solar flare regions. Instead, we consider a system with 8 asymmetric WLCSs.
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Figure 3.5 shows the configuration of 8 WLCSs, located at the eight corners of a box

with length 2.5L0. The direction of the wire current and the normal direction of loop

planes are arbitrary. Particles are initially injected randomly in the inner box. They

are tracked until they reach the outer box with a side length 7.5L0.
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Figure 3.5 An ensemble of WLCSs, which are placed at the eight corners of the
inner cube (black dashed line). The radius of the loops is L0. The length of the inner
box is 2.5L0. The orientation of the wire current and the normal directions of the
loop current are arbitrary. The outer box (black dash-dotted line) is the simulation
domain with side length 7.5L0.

3.2 Particle motion and transport in a time-independent field

To follow particle’s motion, we numerically integrate the Lorentz equation.

d(γβ)

dt
=

Q

A

e

mpc
(E + β ×B) (3.5)
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where e is the electron charge; Q is the charge state, and A is the nucleon number;

mp is the proton mass; γ is the Lorentz factor; β = v/c. We employ three different

tracking methods, including the 4th order Runge-Kutta method (RK4), the Dormand-

Prince method (Press, 2007) and the Wirz’s Modified Boris method (WIRZ) (Mao and

Wirz, 2011). The RK4 method is a general ordinary differential equation integrator.

The Dormand-Prince method is a Runge-Kutta method with adaptive size control.

It has higher order accuracy and runs faster than RK4 (Press, 2007). The WIRZ

method is adapted from the Buneman-Boris particle tracker which is widely used in

Particle-in-Cell (PIC) simulations (Birdsall and Langdon, 1991). It provides a better

estimations of the magnetic field at each time step which is accomplished by using a

corrected magnetic field values at the midpoint (Mao and Wirz, 2011). Comparisons

between these three methods showed that the same particle trajectories are obtained

in both the time-independent and time-dependent cases. This provides a consistency

check to ensure, for example, that our numerical scheme does not introduce any

artificial energy changes.

3.2.1 Particle trajectories

Figure 3.6 shows typical particle trajectories (proton here) for five systems,

including a single wire current along the z-direction, a single loop current on the

x−y plane, a symmetric WLCS, an asymmetric WLCS with Δr = 0.1a and a system

with 8 WLCSs. For a single wire current, the particle gyrates around and streams

along the magnetic field lines and also drifts along the z-direction due to the curvature

and gradient of the magnetic field along the ρ-direction, yielding a helical trajectory.
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For a loop current, the particle follows the field line and drifts along the φ direction

at the same time, forming a drifting shell. The particle is essentially trapped on the

drifting shell. For a symmetric WLCS, the particle is trapped on a torus. When

the system becomes asymmetric, the particle can follow the chaotic magnetic field

lines and access different regions, leading to a more complicated trajectory. But the

particle cannot escape from the system due to the trapping by the magnetic field.

Particles in a system with 8 WLCSs have more freedom because they can “jump”

between different WLCSs. The trajectory will become chaotic as shown in Figure 3.6

(e).

3.2.2 Particle spatial diffusion coefficient

In many astrophysical problems, the motion of charged particles are assumed

to be diffusive. For example, Parker’s cosmic ray transport equation implicitly as-

sumes that cosmic ray’s motion in the solar system is diffusive (Parker, 1965). In

a collisionless plasma such as the solar wind, this diffusion is due to the interaction

between the charged particle and the irregular turbulent magnetic field δB of the

solar wind (Jokipii, 1966, 1971). In the case of a slab turbulence (where the k vector

of the turbulent field is along the B0 direction), this interaction leads to a diffusion

coefficient κ� whose value is decided by the power density δ2B of the turbulent field.

The corresponding motion of the charged particle is a diffusion along the background

magnetic field. Charge particles can also diffuse in the direction perpendicular to the

background field B0. This is often described by κ⊥.
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(a) (b)

(c) (d)

(e)

Figure 3.6 Particle trajectories in different system. (a) A single wire current along
the z-direction. (b) A single loop current on the x−y plane. (c) A symmetric WLCS.
(d) An asymmetric WLCS with δr = 0.1a. (e) 8 WLCSs.
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For a chaotic magnetic field, an ordered background field B0 is hard to define.

Furthermore there is no turbulent magnetic field δB. Therefore, we do not consider

explicitly the parallel or the perpendicular diffusion. Instead, we calculate the running

diffusion coefficient Drr(t) (Qin et al., 2002), which is defined as,

Drr(t) =
�(r − r0)

2�
2t

(3.6)

where �· · · � indicates ensemble average over all test particles; r is current position of a

particle; r0 is particle’s initial position; and t is the time differences between r and r0.

Figure 3.7 shows Drr for particles in a single WLCS and the system with 8 WLCSs.

(a) (b)

(c)

Figure 3.7 Particle running diffusion coefficient Drr(t) for (a) a single WLCS with
different Δr and (b) 8 WLCSs. (c) Drrt for the same configurations.
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Particles with the same energy 8.6 keV (T = 100 MK) are randomly injected in a

box with a side length 2.5L0. The loop current of the single WLCS is at the center

of the box, and the wire current has displacement Δr to the loop center. As seen

in Figure 3.6, particles can access larger regions in an asymmetric WLCS (Δr �= 0)

due to chaotic magnetic field lines, so that Drr is larger in an asymmetric WLCS

than that in a symmetric WLCS, as shown in Figure 3.7 (a). The Drrs have an initial

increase with t when the particles are still in their first cycling around the system

(motion along the φ-direction as shown in Figure 3.6 (d)). Drr is similar for different

asymmetric system. The trajectories in Figure 3.6 show that particles are trapped in

the loop, so we expect Drr to gradually decrease at long times. For the asymmetric

WLCS, we find Drr ∼ t−0.1, resembling a sub-diffusion process. In contrast, Drr is

near-constant for particles in a system with 8 WLCSs, resembling a diffusion process.

Drr is larger in this system than a single WLCS because particles can “jump” between

different WLCS and therefore access a larger region. It is conceivable that this Drr

may eventually decrease since the region the particles can access is likely decided

by the region in which the B field occupies. While the B field is more chaotic in 8

WLCSs, therefore the region it occupies can be considerable larger than the single

WLCS, it may still be “confined”. We also plot Drrt in Figure 3.7 (c) which shows

clear difference of Drr for these systems.

3.3 Particle energization in a time-dependent field

We implement a series of simulations to track protons and electrons in a time-

dependent magnetic field when ω �= 0. We track 106 protons in each simulation but
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only 2.5×104 electrons due to the time limitation for electron tracking. The time step

Δt depends on the particle gyro-period τ = 2πmc/qB, which depends on m and B.

So Δt for electrons is mp/me = 1836 times smaller than that for protons. Electrons

escape from the simulation domain faster than protons with the same thermal energy,

as the thermal speed vth ∼ 1/
√
m. So we set the total tracking time tmax for electrons

40 times smaller than that for protons. The initial particle distribution resembles a

Maxwellian distribution with T = 106 K, a typical plasma temperature in quiet solar

corona.

Figure 3.8 shows the time evolution of the proton energy spectra for systems

with different I0. We set tmax ∼ 1/I0, then tmax/τ is about the same for all simulations,

as τ ∼ B ∼ I0. Protons are highly efficiently accelerated and develop power-law

distribution f(E) ∼ E−p at the end of the simulation. p ∼ 0.8 when I0 = 108 A

and gets smaller when I0 increases, suggesting that the spectrum gets harder when

the electric field gets stronger. Figure 3.8 also shows the fraction Fin of particles

remaining in the simulation box at the end of the simulation. Fin = 54.9% when

I0 = 108 A and increases to 99.8% when I0 = 1011 A, suggesting stronger particle

trapping when B is stronger. The spectra of escaped particles (black solid line) are

even flatter than the spectra inside the simulation box, because most of the escaped

particles are high energy particles that cannot be trapped by the magnetic field.

Figure 3.9 shows electron energy spectra for simulations with different I0.

Note that the statistics is poor because we only tracked 2.5 × 104 electrons for each

simulation. But the spectra are similar to the proton energy spectra. Fin is smaller

than that of protons, because electrons can get out the system faster as they have
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(a) (b)

(c) (d)

Figure 3.8 Time evolution of proton energy spectra for system with ω = 0.001 Hz
for all runs. (a) I0 = 108 A and tmax = 4 sec, (b) I0 = 109 A and tmax = 0.4 sec,
(c) I0 = 1010 A and tmax = 0.04 sec, (d) I0 = 1011 A and tmax = 0.004 sec. The
black thick solid line is the accumulated spectrum for escaped particles. The black
dashed line the fitted power-law spectrum. The fraction of particles remaining in the
simulations Fin is shown in top right corner of each plot.

larger speeds. The maximum energy is ∼ 2 − 3 MeV, which is smaller than that of

protons. Note that tmax is 40 times smaller than that for protons in a system with

the same I0, so the maximum electron energy may be comparable with the maximum

energy of protons if the simulation time is the same.

Figure 3.10 shows the proton energy spectra for higher ω. Comparing with Fig-

ure 3.8 (a), the energy spectra are harder when ω is larger and the resulting electric

field is stronger. This is consistent with previous results that the spectra are harder
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(a) (b)

(c) (d)

Figure 3.9 Time evolution of electron energy spectra for system with ω = 0.001 Hz
for all runs. (a) I0 = 108 A and tmax = 0.1 sec, (b) I0 = 109 A and tmax = 0.01
sec, (c) I0 = 1010 A and tmax = 10−3 sec, (d) I0 = 1011 A and tmax = 10−4 sec. The
black thick solid line is the accumulated spectrum for escaped particles. The black
dashed line the fitted power-law spectrum. The fraction of particles remaining in the
simulations Fin is shown in top right corner of each plot.

when the electric field gets stronger with current I. The spectrum for the case with

ω = 0.1 Hz has a flat low-energy part and a break at E ∼ 100 keV.

3.4 Discussion and conclusion

In this work, motivated by the observation of time-dependent electric currents

in the solar corona and solar flare regions, we investigate charged particle transport

and energization in a wire-loop-current-system (WLCS). We find the energy spectra

are harder than E−1. Such a hard spectrum is possible for particles that are acceler-
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(a) (b)

Figure 3.10 Proton energy spectrum for different ω. I0 = 108 A for all runs. (a)
ω = 0.01 Hz and tmax = 0.4 sec, (b) ω = 0.1 Hz and tmax = 0.04 sec, The black thick
solid line is the accumulated spectrum for escaped particles. The black dashed line
the fitted power-law spectrum. The fraction of particles remaining in the simulations
Fin is shown in top right corner of each plot.

ated via the second order Fermi mechanism. In our case, the time-dependent current

induces a time-dependent electric field. As particles move, they sample electric fields

with different phases, therefore their acceleration is by nature of 2nd order Fermi.

Similar hard spectra have been obtained by Dauphin et al. (2007). In their work,

the authors examined the acceleration and radiation of electrons and ions interacting

with multiple small-scale dissipation regions. These small scale energy release regions

can be, for example, magnetic reconnection sites where reconnecting current sheets

(RCSs) exist. At these current sheets particles are subject to be accelerated by di-

rect electric field. In modeling an ensemble of such multiple energy release regions,

Dauphin et al. (2007) used a cellular automaton (CA) model based on the concept of

self-organized criticality. They showed that the spectra of accelerated ions and elec-

trons are power-law-like. For certain values of the electric field, they obtained spectra

that are considerably harder than E−1 for both electrons and protons. Comparing to

the model of Dauphin et al. (2007), in our model, the electric field is not restricted to
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the current sheets. As the number of energy release sites increases, one expects that

the model examined in Dauphin et al. (2007) and ours should have many similarities.

In calculating the spectra, we do not follow particles that reach the simulation

box and assume that these particles will leave the system. In the case of the solar

corona, if particles reach certain height, they likely encounter open interplanetary

magnetic field lines and can propagate out and be observed in-situ. If a CME ac-

companies the flare, then the CME and the shock it drives can plow through these

energetic particles. This makes our proposed mechanism interesting in that it may

provide the pre-acceleration mechanism to generate the seed particles for a possi-

ble subsequent diffusive shock acceleration at a CME-driven shock (e.g. Desai et al.,

2003). Our model shows that the energy spectrum gets harder with stronger electric

current, which are most likely exist in solar flare regions (Sun et al., 2012; Georgoulis

et al., 2012). If a correlation exists between the pre-event current and the flare size,

then our mechanism would predict that there will be more energetic seed particles in

large flares.

We emphasize that our system is by no means representative of the realistic

solar magnetic fields. Instead, it provides a simple and tractable system from which we

can learn some fundamental behaviors of the particles in a time-dependent chaotic

magnetic field, which, we believe will shed lights on our understanding of particle

acceleration in the solar corona.

To summarize, we investigate charged particle behavior in a chaotic magnetic

field, which is generated from one or multiple asymmetric wire-loop-current-systems

(WLCSs). We find that particle transport in one WLCS is a sub-diffusion process due
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to the trapping by the magnetic field. In contrast, particle transport in 8 WLCSs is a

diffusion process as particles are not trapped by oneWLCS but jump between different

WLCSs. When including time-dependent electric current, both electrons and protons

are accelerated to develop power-law energy distribution with power-law index < 1,

which is consistent with the model of particle acceleration by multiple reconnection

current sheet (Dauphin et al., 2007). The spectra get harder with stronger or faster

varying electric current. The maximum energy reaches to 1 − 10 MeV for both

electrons and protons, which can provide a seed population for the CME-driven shock

acceleration.
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CHAPTER 4

NONTHERMAL ELECTRON ACCELERATION DURING

MAGNETIC RECONNECTION IN A LOW-BETA PLASMA

4.1 Introduction

Particle acceleration associated with reconnection has been studied in recon-

nection driven turbulence (Miller et al., 1996; Liu et al., 2013a), at shocks in the

outflow region (Tsuneta and Naito, 1998; Guo and Giacalone, 2012), and in the re-

connection layer (Drake et al., 2006; Fu et al., 2006; Oka et al., 2010; Kowal et al., 2012;

Guo et al., 2014; Zank et al., 2014; le Roux et al., 2015). Two-dimensional kinetic

simulations have identified different acceleration regions in reconnection. Electrons

get accelerated by parallel electric field when they enter the reconnection region along

the reconnection separatrix (Drake et al., 2005; Egedal et al., 2012, 2015). They are

then accelerated by the reconnection electric field in the X -type region close to the

reconnection point (Hoshino et al., 2001; Fu et al., 2006; Pritchett, 2006; Oka et al.,

2010). When these electrons get convected out with the reconnection outflow, they

are further accelerated by the reconnection electric field through particle curvature

drift and gradient drifts (Hoshino et al., 2001; Fu et al., 2006; Pritchett, 2006; Oka

et al., 2010). Drake et al. (2006) proposed a mechanism by which particles gain en-
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ergy when they reflect from the ends of contracting magnetic islands. Since recent

numerical simulations (Shibata and Tanuma, 2001; Drake et al., 2006; Loureiro et al.,

2007; Bhattacharjee et al., 2009; Daughton et al., 2009b) and observations (Sheeley

et al., 2004; Savage et al., 2012) suggest that reconnection in solar flares involves

many flux ropes, this mechanism could be efficient at accelerating a large number

of electrons. Further simulations have shown that the magnetic island merging re-

gions are also efficient at accelerating electrons by anti-reconnection electric field (Oka

et al., 2010; Le et al., 2012; Drake et al., 2013). An important problem is to identify

the main acceleration region and primary acceleration mechanism. Through tracking

energetic electron trajectories, several works have suggested that the most energetic

electrons are accelerated in the magnetic island merging region (Oka et al., 2010;

Nalewajko et al., 2015). To identify the major acceleration regions for solar corona

and accretion disk corona, simulations with more realistic conditions (nonrelativistic

proton-electron plasma with β � 1) are necessary.

Most simulations focus on regimes with plasma β ≥ 0.1, with no obvious

power-law distributions emerged. Simulations of relativistic reconnection in a low-

density pair plasma have shown the development of a power-law distribution in the

X -region (Zenitani and Hoshino, 2001). It was argued that particle loss from the

simulation domain is important for developing a power-law distribution (Drake et al.,

2010). Recent kinetic simulations with a highly magnetized (σ ≡ B2/4πnemec
2 � 1)

relativistic pair plasma showed that a power-law distribution develops without par-

ticle loss, although loss mechanism may be important in determining the spectral

index (Guo et al., 2014, 2015). It is unknown whether this is still valid for recon-
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nection in a nonrelativistic proton-electron plasma, since the property of relativistic

reconnection can be significantly different from the nonrelativistic case (Liu et al.,

2015).

In this chapter, motivated by the results of relativistic reconnection, we con-

sider fully kinetic simulations of magnetic reconnection in a nonrelativistic proton-

electron plasma with a range of electron and ion betas: βe = βi = 0.007 − 0.2.

The low-β regime is relatively unexplored previously due to various numerical chal-

lenges. For example, the numerical heating can be larger than the kinetic energy

when β < 0.01, since the initial kinetic energy is < 1.5% of the total energy. We

find that reconnection in the low-β regime can drive efficient energy conversion and

accelerate electrons into a power-law distribution f(E) ∼ E−1. By the end of the

simulations, more than half of electrons in number and 90% in energy are in the

nonthermal population of electrons in the system. This strong energy conversion and

particle acceleration lead to a post-reconnection region where the kinetic energy of

energetic particles is comparable to the magnetic energy. Since most electrons are

magnetized in low-β plasma, we use a guiding-center drift description to demonstrate

that the main acceleration process is a Fermi -type mechanism through the particle

curvature drift motion along the electric field induced by fast plasma flows. The de-

velopment of a power-law distribution is consistent with the analytical model (Guo

et al., 2014). The nonthermally dominated energization process may help explain the

efficient electron acceleration in the low-β plasma environments, such as solar flares

and other astrophysical reconnection sites.
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In Section 4.2, we describe the numerical simulations. In Section 4.3, we

present results of the simulations and describe the conditions for the development of

a power-law energy distribution. We discuss our results and conclude in Section 4.4.

4.2 Numerical simulations

The kinetic simulations are carried out using the VPIC code (Bowers et al.,

2008), which solves the Maxwell’s equations and follows particles in a fully relativistic

manner. Appendix E contains an introduction of the PIC method and detailed steps

to implement a 2D PIC code. We use 2D simulations because it is computationally

tractable, while the 3D simulations with similar system size requires ∼ 103 times

more computational resources. And the results from 3D simulations with pair plas-

mas have shown no obvious difference in particle energization between 2D and 3D

simulations (Guo et al., 2014; Sironi and Spitkovsky, 2014). Therefore, 2D simulations

are still very useful in studying particle energization processes during reconnection.

In our simulations, the initial condition is a force-free current sheet with mag-

netic field

B = B0 tanh(z/λ)x̂+ B0 sech(z/λ)ŷ (4.1)

where λ = di is the half thickness of the layer. Here, di is the ion inertial length. The

magnetic field rotates 180◦ across this current sheet. Figure 4.1 shows the profile of

Bx and By along the z-direction. The plasma consists of protons and electrons with

a mass ratio mi/me = 25, yielding a spatial scale separation di/de = 5. Although 25

is much smaller than the proton-electron mass ratio 1836, it has been argued that
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Figure 4.1 Magnetic field profile of a force-free current sheet. λ = di in this plot.
Bx and By are normalized by B0.

the reconnection rate and the structure of the reconnection outflow does not depends

on this ratio (Shay and Drake, 1998; Shay et al., 2007; Hesse et al., 1999). This

artificial mass ratio makes the simulation tractable since the computational time scales

as ∼ (mi/me)
2 for 2D simulations (∼ (mi/me)

5/2 for 3D simulations). The initial

distributions for both electrons and protons are Maxwellian with uniform density n0

and temperature kTi = kTe = 0.01mec
2. A drift velocity for electrons Ue is added

to represent the current density that satisfies the Ampere’s law initially. The initial

electron and ion βe = βi = 8πn0kTe/B
2
0 are varied by changing ωpe/Ωce, where ωpe =

�
4πn0e2/me is the electron plasma frequency and Ωce = eB0/(mec) is the electron

gyrofrequency. Values of βe = 0.007, 0.02, 0.06 and 0.2 correspond to ωpe/Ωce = 0.6,

1,
√
3 and

√
10, respectively. The domain sizes are Lx × Lz = 200di × 100di. We

use Nx × Nz = 4096 × 2048 cells with 200 particles per species per cell. The grid
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size is about the Debye length λD =
�

kTe/4πn0e2 to reduce numerical heating.

The boundary conditions are periodic along the x direction, perfectly conducting

boundaries for fields and reflecting boundaries for particles along the z direction. No

escape of particles are considered in our simulations. A modified long wavelength

perturbation is added to induce the reconnection (Birn et al., 2001).

ψ = ψ0 cos

�
2π

�
x

Lx

− 1

2

��
cos

�
πz

Lz

�
; (4.2)

δB = ŷ ×∇ψ, (4.3)

where ψ0 = 0.03B0Lz/2π. Each simulation uses ∼ 2 × 104 CPU core hours and

dumps ∼ 500 GiB of fields data, including the electromagnetic fields, the current

densities, the charge densities, the momentum densities and the stress tensor. The

fluid velocities for each species are obtained using their current densities. The four-

velocities are calculated using the momentum densities. The pressure tensor are

calculated using the stress tensor. Besides the fields data, about 2 TiB of particle data

is dumped for the diagnostics of particle energy spectra and phase space distribution.

As mentioned previously, the simulation time scales as (mi/me)
2 for 2D simulations.

The size of the dumped data scales as mi/me
1.

13D simulations are more expensive because the computational time will be ∼ 103 more than
that of the 2D simulations and the data size is ∼ 103 times of the 2D simulations. Additionally, the
computational time scales as (mi/me)

5/2 and the data size scales as (mi/me)
3/2 in 3D simulations,

which grows faster with mi/me than 2D simulations.
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4.3 Simulation results

4.3.1 General energy evolution

Under the influence of the initial perturbation, the current sheet quickly thins

down to a thickness of ∼ de (electron inertial length c/ωpe). Figure 4.2 shows jy at

t = 0 and tΩci = 40. Note that the magnetic field lines in Figure 4.2 (a) are not exactly

antiparallel to each other across the current sheet due to the initial perturbation. The

instability starts growing at tΩci = 40. The current sheet is thinner than the initial

current sheet seen from Figure 4.2 (c). The thin current sheet is unstable to the

plasmoid instability (Daughton et al., 2009b; Liu et al., 2013b). Figure 4.3(a) and

(b) show the evolution of the out-of-plane current density jy at two latter times. The

reconnection layer breaks and generates a chain of magnetic islands that interact

and coalesce with each other. The largest island eventually grow comparable to the

system size and the reconnection saturates at tΩci ∼ 800.

Figure 4.4(a) shows time evolution of the magnetic energy (integrated over the

system) in the x direction (the reconnecting component) εbx, the kinetic energy of

electrons Ke and ions Ki for the case with βe = 0.02, respectively. Throughout the

simulation (until tΩci = 800), 40% of the initial εbx is converted into plasma kinetic

energy, and 10% of εbx is transferred into εby and εbz. Of the converted energy, 38%

goes into electrons and 62% goes into ions. We have carried out simulations with

larger domains (not shown) to confirm that the energy conversion is still efficient and

it only depends on system size weakly. Since the free magnetic energy overwhelms

the initial plasma kinetic energy, particles in the reconnection region are strongly
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(a)

(b)

(c)

Figure 4.2 Out-of-plane current density for the case with βe = 0.02 at (a) tΩci = 0,
(b) tΩci = 40. The dashed lines indicate a cut along the z-direction. (c) jy along the
cut.
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(a)

(b)

Figure 4.3 Out-of-plane current density jy for the case with βe = 0.02 at (a) tΩci =
62.5, (b) tΩci = 400.

energized. By the end of the simulation, Ke and Ki are 5.8 and 9.4 times of their

initial values, respectively. Figure 4.4(b) shows the ratio of the energy gain ΔKe of

electrons to the initial electron energy Ke(0) for different cases. While the βe = 0.2

case shows only mild energization, cases with lower βe give stronger energization as

the free energy increases.

(a) (b)

Figure 4.4 (a) The energy evolution for βe = 0.02 case. εbx(t) is the magnetic
energy of the reconnecting component. εe is the electric energy. Ki and Ke are ion
and electron kinetic energies respectively. They are normalized by εbx(0). (b) The
ratio of electron energy gain ΔKe to the initial Ke for different initial βe.
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4.3.2 Particle energization

The energy conversion drives strong nonthermal electron acceleration. Fig-

ure 4.5(a) shows the final electron energy spectra over the whole simulation domain

for the four cases. More electrons are accelerated to high energies for lower-β cases,

consistent with the simulations in a low-density plasma (Bessho and Bhattacharjee,

2010). More interestingly, in the cases with βe = 0.02 and 0.007, the energy spec-

tra develop a power-law-like tail f(E) ∼ E−p with the spectral index p ∼ 1. This

is similar to the results from kinetic simulations of relativistic magnetic reconnec-

tion (Guo et al., 2014, 2015). We have carried out one simulation with mi/me = 100

and βe = 0.02, and find similar electron spectrum. The results are presented in the

next chapter. In contrast, the case with βe = 0.2 does not show any obvious power-

law tail, consistent with earlier simulations (Drake et al., 2010; Dahlin et al., 2014).

The nonthermal population dominates the distribution function in the low-β cases.

For example, at tΩci = 1200, when we subtract the thermal population by fitting

the low-energy particle distribution as a Maxwellian distribution with thermal energy

∼ Eth, the nonthermal tail in the βe = 0.02 case contains 55% of electrons and 92%

of the total electron energy. The power-law tail breaks at energy Eb ∼ 10Eth for

βe = 0.02, and extends to higher energy for βe = 0.007. Figure 4.5(b) shows the

fraction of nonthermal electrons nnth/N0 for different cases. It keeps increasing until

reconnection saturates. For the lowest βe in this study, the nonthermal fraction goes

up to 66%, but it decreases to 17% for βe = 0.2. Figure 4.5(c) and (d) show the

ratio nacc/ne at tΩci = 125 and 400 for the case with βe = 0.02, where nacc is the
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number density of energetic electrons with energies larger than 3 times of their initial

thermal energy, and ne is the total electron number density. The fraction of energetic

electrons is over 40% and up to 80% inside the magnetic islands and reconnection ex-

hausts, indicating a bulk energization for most of electrons in the reconnection layer.

Finally, Figure 4.5(d) shows the energetic electrons will eventually be trapped inside

the largest magnetic island. No mechanism exists to split the magnetic island, so

no “quench” of the nonthermal electrons. The nonthermally dominated distribution

contains most of the converted magnetic energy, indicating that energy conversion

and particle acceleration are intimately related.

4.3.3 Drift-current analysis of the energy conversion

To study the energy conversion process in detail, Figure 4.6(a) shows the

energy conversion rate dεc/dt from magnetic field to electrons through the parallel

and perpendicular directions with respect to local magnetic fields. We define dεc/dt =

�
D j � · EdV , where D indicates the simulation domain, and j � is j� or j⊥ here. We

find that the energy conversion from the perpendicular direction gives ∼ 90% of the

electron energy gain. By tracking the trajectories (shown in the next chapter) of a

large number of accelerated electrons, we find that electrons can be accelerated in the

diffusion region, contracting magnetic island, magnetic field pile-up region and by

magnetic island coalescence. The acceleration mechanisms have been associated with

particle drift motions along the motional electric field (Hoshino et al., 2001; Hoshino,

2005; Drake et al., 2006; Oka et al., 2010; Guo et al., 2014; Dahlin et al., 2014). To

reveal the role of particle drift motions, we use a guiding-center drift description to

69



(a)

(b)

(c)

(d)

Figure 4.5 (a) Electron energy spectra f(E) at tΩci = 800 for different βe. The elec-
tron energy E is normalized to the initial thermal energy Eth. The black dashed line
is the initial thermal distribution. (b) Time evolution of the fraction of nonthermal
electrons for different initial βe. nnth is the number of nonthermal electrons, obtained
by subtracting the fitted thermal population from whole particle distribution. The
fraction of electrons with energies larger than 3 times of the initial thermal energy at
(c) tΩci = 125, (d) tΩci = 400.
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study in detail the electron energization process. Below we examine the βe = 0.02

case as an example. The initial low β guarantees that guiding-center approximation

is reasonable, since the typical electron gyroradius ρe is smaller than the spatial scale

of the field variation (∼ di).

(a)

(b)

1 2 3

Figure 4.6 Verification of the guiding-center drift approximation for the case with
βe = 0.02. (a) Energy conversion rate dεc/dt (integrated over the simulation domain)i
for electrons in the parallel and perpendicular directions with respect to local magnetic
fields, compared with the energy change rate of electrons dKe/dt. They are normalized
by mec

2ωpe. (b) Electron pressure agyrotropy AØe at tΩci = 400. See Equation 4.12
for the definition of AØe. The momentum space distributions in the three blue boxes
(x = 53, 61 and 71di) are shown in Figure 4.7. Boxes 1 and 2 are close to the
reconnection X -point. Box 3 is in the reconnection outflow.

The perpendicular current density can be obtained by ensemble averaging

the particle gyromotion and drift motion (Parker, 1957a) or through the momentum

equation of the two-fluid model (Blandford et al., 2014). We start from the momentum

equation

nsms
dus

dt
= −∇ · P+ ρE + js ×B (4.4)
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where ns is the particle number density, ms is the particle mass, ρ = nsqs is the charge

density, js is the current density, P is the pressure tensor. We neglect the subscript

s for simplicity. Taking cross product on both sides with B

j⊥ = −(∇ · P)×B

B2
+ ρ

E ×B

B2
− nm

du

dt
×B (4.5)

Assuming the pressure tensor is gyrotropic (particles are magnetized),

P = p⊥I+ (p� − p⊥)b̂b̂ (4.6)

∇ · P = ∇p⊥ +∇ ·
�
p� − p⊥

B2
B

�
B +

p� − p⊥
B2

(B ·∇)B (4.7)

where p� and p⊥ are parallel and perpendicular pressures with respect to the local

magnetic field; I is the unit dyadic; b̂ = B/B is the unit vector along the local

magnetic field. We calculate p� and p⊥ using the particle distribution f in each cell.

p� ≡ m
�
(v� − u�)2fdv and p⊥ ≡ 0.5m

�
(v⊥ − u⊥)2fdv. Insert into Equation 4.5.

j⊥ = −∇p⊥ ×B

B2
+ (p� − p⊥)

B × (B ·∇)B

B4
+ ρ

E ×B

B2
− nm

du

dt
× B

B2
(4.8)

The first term on the right is due to diamagnetic drift2. The second term is due to

magnetic curvature. The third term is due to the E × B drift. The last term is

due to the acceleration/deceleration of the bulk flow. The terms associated with p⊥

2A diamagnetic drift is not a guiding-center drift but a fluid drift due to the presence of a pressure
gradient.
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in Equation 4.8 further reduces to

− ∇p⊥ ×B

B2
+

p⊥
B4

[(B ·∇)B]×B

=−∇× p⊥B

B2
+ p⊥∇× B

B2
+

p⊥
B4

�
1

2
∇B2 −B × (∇×B)

�
×B

=−∇× p⊥B

B2
+ p⊥

�
B

B3

�
×∇B +

p⊥
B4

B · (∇×B)B (4.9)

where the last term can further reduce to

B

B2
·
�
∇× p⊥B

B2
−∇ p⊥

B2
×B

�
B =

�
∇× p⊥B

B2

�

�
(4.10)

So, j⊥ becomes

j⊥ = p�
B × (B ·∇)B

B4
+p⊥

B ×∇B

B3
−
�
∇× p⊥B

B2

�

⊥
+ρ

E ×B

B2
−nm

du

dt
× B

B2
(4.11)

where the first term on the right is due to curvature drift, the second term is due

to gradient drift, the third term is due to perpendicular magnetization, the fourth

term is due to the E ×B drift, and the last term is due to polarization drift. The

expression is simplified as j⊥ = jc+jg+jm+jE×B+jp, in which jE×B has no direct

contribution to the energy conversion. This gives an accurate description for j⊥ if

the pressure tensor is gyrotropic. To confirm this, we calculate the electron pressure

agyrotropy

AØe ≡ 2
|p⊥e1 − p⊥e2|
p⊥e1 + p⊥e2

, (4.12)
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where p⊥e1 and p⊥e2 are the two pressure eigenvalues associated with eigenvectors

perpendicular to the mean magnetic field direction (Scudder and Daughton, 2008).

AØe measures the departure of the pressure tensor from cylindrical symmetry about

the local magnetic field. It is zero when the local particle distribution is gyrotropic.

Figure 4.6(b) shows that the regions with nonzero AØe are localized to the X -points.

The small AØe indicates that the electron distributions are nearly gyrotropic in most

regions, and most electrons are well-magnetized. Figure 4.7 shows the non-gyrotropic

particle distributions only exist close to the reconnection X -line (top and middle

rows). The particle distributions are nearly isotropic in the reconnection outflow,

which is the major particle acceleration region. Therefore, a drift description is a

good approximation for electrons in our simulations even when there is no external

guide field. This is in contrast to high-β plasma, where a guide field is necessary to

assume a gyrotropic distribution (e.g. Dahlin et al., 2014).

Figure 4.8(a) and (b) show time-dependent dεc/dt and εc due to different cur-

rent terms, where εc =
�
(dεc/dt)dt. The contribution from polarization current and

parallel current are small and not shown. The curvature drift term is the dominant

term of j⊥ ·E, the ∇B term gives a net cooling effect, and the magnetization term

is small compared to these two. Figure 4.8(c) shows the spatial distribution of jc ·E.

When the plasma flow velocity u is along the magnetic field curvature κ due to tension

force, jc ·E ≈ (p�B×κ/B2) · (−u×B) is positive. These regions are a few di along

the z direction, but over 50di along the x direction. jc ·E can be negative when u and

κ are opposite in direction due to a background flow (Dahlin et al., 2014). The overall

effect of jc ·E is a strong electron energization. Figure 4.8(d) shows that jg ·E is neg-
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(1)

(2)

(3)

Figure 4.7 Electron momentum distributions in the 3 boxes shown in Figure 4.6 (b).
u = γv/c, and γ is the Lorentz factor.

ative in most regions. This is because the strong ∇B is along the direction out of the

reconnection exhausts. Then, jg ·E ∼ (B×∇B) ·(−u×B) is negative. Figure 4.8(e)

shows the cumulative jc ·E and jg ·E along the x-direction, i.e.
� x

0

� Lz

0
jc ·Edx�dz

and
� x

0

� Lz

0
jg ·Edx�dz. In the reconnection exhaust region(x = 60− 115di), jc ·E is

stronger than jg ·E, so the electrons can be efficiently accelerated when going through

these regions. In the pile-up region(x = 120 − 140di), κ, ∇B and u are along the

same direction, so both terms give net electron heating. In the island coalescence

region(x ∼ 150di), jc · E gives electron heating, while jg · E gives strong electron
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cooling. Although the net effect is electron cooling, island coalescence can be efficient

in accelerating electrons to the high energies in agreement with earlier simulation

by Oka et al. (2010).

It has been shown that the curvature drift acceleration in the reconnection

region corresponds to a Fermi -type mechanism (Guo et al., 2014; Dahlin et al., 2014;

Guo et al., 2015). To develop a power-law energy distribution for the Fermi acceler-

ation mechanism, the characteristic acceleration time τacc = 1/α needs to be smaller

than the particle injection time τinj (Guo et al., 2014, 2015), where α = (1/ε)(∂ε/∂t),

and ∂ε/∂t is the energy change rate of particles. To estimate the ordering of Fermi

acceleration rate from the single-particle drift motion, consider the curvature drift

velocity vc = v2�B × κ/(ΩceB) in a curved field where Rc = |κ|−1, so the time for a

particle to cross this region is ∼ Rc/v� and the electric field is mostly induced by the

Alfvénic plasma flow E ∼ −vA ×B/c. The energy gain in one cycle is δε ∼ mvAv�.

The time for a particle to cross the island is Lisland/v�. Then the acceleration rate

∂ε/∂t ∼ εvA/Lisland for a nearly isotropic particle distribution. The characteristic

acceleration time τacc ∼ Lisland/vA. Taking Lisland ∼ 50di and vA ∼ 0.2c, the acceler-

ation time τacc ∼ 250Ω−1
ci . The actual acceleration time may be longer because the

outflow speed will decrease from vA away from the X -points, and the ∇B term gives

a non-negligible cooling effect. Our analysis has also found that pre-acceleration and

trapping effects at the X -line region can lead to more efficient electron acceleration

by Fermi mechanism and are worthwhile to be investigated further (Hoshino, 2005;

Egedal et al., 2015; Huang et al., 2015). Taking the main energy release phase as

the injection time τinj ∼ 800Ω−1
ci , the estimated value of τinj/τacc ∼ 3.2, well above
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Figure 4.8 Various energization of electrons using a drift description for the case
with βe = 0.02. (a) the energy conversion rate due to different type of current terms,
compared with the electron energy change rate dKe/dt. jc · E, jg · E, and jm · E
represent energy conversion due to curvature drift, ∇B drift, and magnetization, re-
spectively. (b) The converted magnetic energy due to various terms in (a), normalized
to the initial magnetic energy of the reconnecting component εbx(0). (c) Color-coded
contours of energy conversion rate due to curvature drift at t = 400Ω−1

ci . κ and u
indicate the directions of the magnetic field curvature and the bulk flow velocity. (d)
Color-coded contours of energy conversion rate due to ∇B drift at t = 400Ω−1

ci . B
and ∇B indicate the directions of the magnetic field and the gradient of |B|. Both

jc · E and jg · E are normalized to the 0.002n0mec
2ωpe. (e)

� x

0

� Lz

0
ji · Edx�dz for

ji = jc and ji = jg. The black line is the sum of these two.
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the threshold. For the case with βe = 0.2, vA is ∼ 10% of the vA of the case with

βe = 0.02. The ratio τinj/τacc ∼ 0.32 < 1, so there is no power-law energy distribution

in the case with βe = 0.2.

4.4 Discussion and conclusion

Nonthermal power-law distributions of electrons or ions have rarely been found

in previous kinetic simulations of nonrelativistic simulations of magnetic reconnec-

tion (e.g. Drake et al., 2010). We find that two conditions are essential for producing

power-law electron energization. The first condition is that the domain should be

large enough to sustain reconnection for a sufficient long duration. A power-law

tail develops as the acceleration continues long enough (τinj/τacc > 1). The second

condition is that plasma β must be low, and it is essential to form a nonthermally

dominated power-law distribution by providing enough free energy (∝ 1/β) for non-

thermal electrons. Assuming 10% of magnetic energy is converted into nonthermal

electrons with spectral index p = 1, one can estimate that βe is about 0.02 for half

of electrons to be accelerated into a power-law that extends to 10Eth. This agrees

well with our simulation. We point out that a loss mechanism (Fermi, 1949; Guo

et al., 2014) or radiation cooling due to gyrosynchrotron radiation can affect the final

power-law index of nonthermal electrons. Consequently, including loss mechanisms

in a large three-dimensional open system is important, for example, to explain the

observed power-law index in solar flares and other astrophysical reconnection sites.

Another factor that may influence our results is the presence of an external guide field

Bg. Our analysis has shown that the Fermi acceleration dominates when Bg � B0.
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The full discussion for the cases including the guide field will be reported in a lat-

ter chapter. A potentially important issue is the three-dimensional instability such

as kink instability that may strongly influence the results. Unfortunately, the cor-

responding three-dimensional simulation is beyond the computing resource that is

available. We note that results from three-dimensional simulations with pair plasmas

have shown development of strong kink instability but appear to have no strong in-

fluence on particle acceleration (Guo et al., 2014; Sironi and Spitkovsky, 2014). The

growth rate of the kink instability can be much less than the tearing instability for

a high mass ratio (Daughton, 1999), and therefore the kink instability may be even

less important for electron acceleration in a proton-electron plasma.

In our simulations, we vary plasma β by varying the magnetic field strength,

which is equivalent to varying the plasma density. It has been shown that both the

reconnection rate and the electron acceleration efficiency can be enhanced for the

cases with low plasma density (Bessho and Bhattacharjee, 2010; Wu et al., 2011). We

have carried out simulations with fixed plasma density, but varying electron and ion

temperature. The results still show that the power-law energy distribution develops

in the low-β cases, but not in the high-β cases. This is discussed in the next chapter.

The energy partition between electrons and protons shows that more magnetic

energy is converted into protons. For simulations with higher mass ratio mi/me =

100, the energetic electrons still develop a power-law distribution and the fraction of

electron energy to the total plasma energy is about 33%, indicating that the energy

conversion and electron acceleration are still efficient for higher mass ratios. Our

results show that ions also develop a power-law energy spectrum for low-β cases and
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the curvature drift acceleration is the leading mechanism. The results are reported

in the next chapter.

The energetic electrons can generate observable X-ray emissions. As non-

thermal electrons are mostly concentrated inside the magnetic islands, the generated

hard X-ray flux can be strong enough to be observed during solar flares in the above-

the-loop-top region (Masuda et al., 1994; Krucker et al., 2010) and the reconnection

outflow region (Liu et al., 2013a). The nonthermal electrons may also account for the

X-ray flares in accretion disk corona (Galeev et al., 1979; Haardt et al., 1994).

In summary, we find that in a nonrelativistic low-β proton-electron plasma,

magnetic reconnection is highly efficient at converting the free energy stored in a

magnetic shear into plasma kinetic energy, and accelerate electrons into nonthermal

energies. The nonthermal electrons contain more than half of the total electrons,

and their distribution resembles power-law energy spectra f(E) ∼ E−1 when particle

loss is absent. This is in contrast to the high-β cases, where no obvious power-law

spectrum is observed (e.g. Drake et al., 2010). It is important to emphasize that the

particle acceleration discussed here is distinct from the acceleration by shocks, where

the nonthermal population contains only about 1% of particles (Neergaard Parker

and Zank, 2012).
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CHAPTER 5

PARAMETRIC STUDY OF PARTICLE ACCELERATION DURING

MAGNETIC RECONNECTION WITHOUT A GUIDE FIELD

5.1 Introduction

In the last chapter, we performed kinetic simulations in a nonrelativistic low-β

(β ∼ 0.01) proton-electron plasma. We found similar power-law energy distributions

as in the relativistic reconnection. When calculating the energy distribution over

the whole simulation domain, the nonthermal electrons can be over 50% of the total

electrons in the low-β simulations. In the simulation, the low plasma β is achieved

by increasing the magnetic field (or equivalently decreasing the particle density with

constant plasma temperature), and the Alfvèn speed is also increased. In this chapter,

we examine other ways to achieve a low-β plasma. In particular, we will adjust the

plasma temperature but keep vA constant or increase the magnetic field.

We perform 2D kinetic simulations of magnetic reconnection in a nonrela-

tivistic proton-electron plasma with a range of plasma βe = βi = 0.007 − 0.2. As

a continuation of Li et al. (2015) and the last chapter, we focus on understanding

the dependence of the energy conversion and particle energization on plasma β. By

tracking a large number of particles, we identify the particle acceleration regions.
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By implementing a drift current analysis, we examine particle acceleration due to

different mechanisms. Comparing with the last chapter, a new topic we discuss in

this chapter is ion acceleration. We carry out similar analysis for both electrons

and ions to show differences and similarities between their acceleration processes.

In Section 5.2, we list the parameters for our simulations. In Section 5.3, we present

simulation results. In Section 5.4, we present discussions and conclusions based on

our simulations results.

5.2 Numerical simulations

The simulation setup is similar as the previous chapter. The plasma consists

of protons and electrons with mass ratio mi/me = 25 for most of cases. We have

run a case with mi/me = 100 to examine the effect of mass ratio. The plasma

β = 2βe = 16πn0kT0/B
2
0 , where βe is the electron plasma. We vary βe by using

different T0 and/or B0 in different simulations. Note a change of B0 will also result

in a change of the Alfvén speed vA = B0/
√
4πn0mi. The parameters for all runs are

listed in Table 5.1, which gives the asymptotic values of the magnetic field strength

B0, the light speed in the unit of Alfvén speed c/vA, vthe, ωpe/Ωce, the magnetization

parameter σ, βe, the box sizes and the number of particles per cell per species nppc.

The domain sizes were chosen to be Lx × Lz = 200di × 100di for all simulations. As

in the last chapter, we choose the domains size large enough so that the reconnection

can be sustained for a long time, which is essential for the development of a power-law

energy distribution (Guo et al., 2014, 2015; Li et al., 2015). For fields, we employ

periodic boundaries along the x-direction and perfectly conducting boundaries along
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Table 5.1. List of simulation runs

Run mi/me B0 c/vA vthe/c ωpe/Ωce σ βe Nx ×Nz nppc

R1 25 1.0 5.0 0.14 1.0 1.0 0.02 4096× 2048 400

R2 25 1/
√
3 8.7 0.08

√
3 0.33 0.02 4096× 2048 200

R3 25 1/
√
10 15.8 0.045

√
10 0.1 0.02 4096× 2048 200

R4 25 1.0 5.0 0.14 1.0 1.0 0.02 4096× 2048 200
R5 100 1.0 10.0 0.14 1.0 1.0 0.02 8000× 4000 350

R6 25
√
3 2.9 0.14 1/

√
3 3.0 0.007 4096× 2048 200

R7 25 1/
√
3 8.7 0.14

√
3 0.33 0.07 4096× 2048 200

R8 25 1/
√
10 15.8 0.14

√
10 0.1 0.2 4096× 2048 400

Note. — B0 is the asymptotic magnetic field strength. vA = B0/
√
4πn0mi is the

Alfvén speed of the inflow region. vthe =
�

2kTe/me is the electron thermal speed.

ωpe =
�
4πn0e2/me is the electron plasma frequency. Ωce = eB/(mec) is the electron

gyrofrequency. σ = B2
0/(4πn0mec

2) is the magnetization parameter. βe = 8πn0kTe/B
2
0 is

the electron plasma β. Nx and Nz are the grid sizes along the x-direction and z-direction,
respectively. nppc is the number of particles per cell for each species. R4 is similar as R1
except there is no initial long wavelength perturbation.

the z-direction. For particles, we employ periodic boundaries along the x-direction,

and they reflect at the boundaries along the z-direction. We add a long wavelength

perturbation with Bz = 0.03B0 to induce reconnection (Birn et al., 2001) for all runs

except run R4, which starts from numerical noises due to the random sampling of a

finite number of particles.

5.3 Results

5.3.1 Evolution of magnetic field and plasma

As reconnection starts, the current layer breaks into a series of magnetic is-

lands, which merge with each other into larger island. The largest island keeps grow-
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Table 5.2. Energy conversion for different runs

Run |Δεb|/εb0 ΔKe/Ke0 ΔKi/Ki0 Fnte Fnti Knte/Ke Knti/Ki

R1 0.39 4.85 8.43 0.55 0.52 0.92 0.95
R2 0.38 5.11 7.43 0.52 0.49 0.91 0.95
R3 0.37 6.22 6.59 0.49 0.50 0.90 0.92
R4 0.38 5.16 7.93 0.53 0.49 0.90 0.95
R5 0.38 4.09 8.82 0.42 0.44 0.87 0.95
R6 0.42 13.29 28.05 0.66 0.60 0.97 0.99
R7 0.36 2.21 2.29 0.38 0.40 0.74 0.81
R8 0.29 0.57 0.54 0.17 0.19 0.39 0.47

Note. — ΔKe and ΔKi are the energy gain for electrons and ions, respectively.
Ke0 and Ki0 are the initial energy of electrons and ions, respectively. Nnth/N0

is the fraction of nonthermal particles. |Δεb|/εb0 is the fraction of dissipated
magnetic energy. Fnthe = Nnthe/N0 and Fnthi = Nnthi/N0 are the fraction of non-
thermal electrons and ions, respectively. Knthe/Ke and Knthi/Ki are the fraction
energy that nonthermal electrons and ions contain, respectively.

ing until its size is comparable to the system size and at that time the reconnection

ceased. Figure 5.1 (a) shows the evolution of the out-of-plane magnetic field By for run

R1. About 10 small magnetic islands are generated from the initial current sheet and

interact and coalesce with each other, with three islands remaining at tΩci = 152.5.

One of them, located at x ∼ 120di, consists of two smaller merging islands. The

elongated current layer becomes unstable again after tΩci = 152.5 (Daughton et al.,

2006) and breaks into secondary islands (e.g. x ∼ 90di in the middle panel). The

out-of-plane component of the magnetic field By is initially in the center of the force-

free current sheet. As the current layer breaks into multiple magnetic islands, the

magnetic flux of By get trapped in the center of these islands. The current sheet

then evolves like a Harris current sheet without a guide field (anti-parallel recon-
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nection). As similar to the case of last chapter, By at late times shows quadrupole

structures (bottom two panels of Figure 5.1), which are a signature of Hall physics in

anti-parallel reconnection (Drake et al., 2008).

(a) (b)

(c)

Figure 5.1 (a) Out-of-plane magnetic field By for run R1 at tΩci = 60, 152.5 and
800. The arrow in the middle panel indicates one island merging region. We study
the energy conversion in the box in Figure 5.14. (b) The bulk flow velocity vx =�

s nsmsvsx/
�

s nsms for run R1 at tΩci = 60 and 152.5. The dashed line in the
upper two panels are a horizontal cut along z = 0. Plotted in (c) is vx along the
cut. The red line is the cut at tΩci = 60. The blue line is the cut at tΩci = 152.5.
vx is normalized to the reconnection inflow Alfvén speed vA. The overplotted arrow
indicates a reconnection X -point. The square indicates a contracting magnetic island
with two smaller merging islands.

The reconnection process drives fast bulk flow in the x-direction. Figure 5.1

(b) shows the velocity vx at tΩci = 60 and 152.5. vx is the center-of-mass velocity by

averaging over electrons and ions in a computing cell vx =
�

s nsmsvsx/
�

s nsms. At

tΩci = 60, the newly formed magnetic islands are strongly contracting. A cut along

the x-direction shows vx switches between 0.5vA and −0.5vA in 10di. At tΩci = 152.5,

85



the diverging flow (shown by the arrow) at x ∼ 85di indicates a reconnection X -point,

and the converging flow at x ∼ 100 − 140di indicates a contracting magnetic island.

Both regions can be efficient at accelerating particles. The reconnection generated

bulk flow induces electric field −u×B mostly along the y-direction. Figure 5.2 shows

Ey and the parallel electric field E� for run R1 at tΩci = 60 and tΩci = 152.5. Ey

broadly distributes in the reconnection region and peaks at the two sides of magnetic

islands. The amplitude of Ey ∼ vAB0, as expected. E� peaks at the reconnection

separatrix. It accelerates electrons when they are streaming into the reconnection

region (Egedal et al., 2012), generating electron beams that drive instabilities to form

the electron hole structures in E� plots (Omura et al., 1996). But E� is much smaller

than Ey. The dominance of Ey suggests that particles are most accelerated along the

perpendicular direction to the local magnetic field.

(a) (b)

Figure 5.2 Parallel electric field E� and out-of-plane electric field Ey for run R1 at
(a) tΩci = 60 and (b) tΩci = 152.5. The parallel direction is respect to the local
magnetic field direction. We normalize the electric field to 0.5vAB0. Note that the
color scales are different for E� and Ey.

86



We also check whether the reconnection rate depends on the simulation plasma

parameters. We calculate the reconnection rate as ER = �∂ψ/∂t� /(BvA), in which

ψ = max(Ay)−min(Ay) along z = 0, where Ay is the y component of the vector po-

tential (Daughton et al., 2009b). B is B0, and vA is the inflow Alfvén speed. Figure 5.3

gives the evolution of the reconnection rates ER for 5 runs. The peak reconnection

rate is ∼ 0.1 for all runs. Runs R1 and R3 have different plasma temperature, but

the evolution of their ER is similar, suggesting that the plasma temperature does not

change the reconnection rate when the initial plasma β is the same. The mass ratio

does not change the reconnection rate either, as ER for run R5 (mi/me = 100) is close

to that of R1 and R3 (mi/me = 25). This agrees with earlier works (Hesse et al.,

1999; Shay et al., 1999). The bottom panel of Figure 5.3 shows two runs with differ-

ent plasma β. R6 and R8 have the same plasma temperature but different magnetic

field strength (or equivalently different plasma density). The reconnection rate of R6

(βe = 0.007)is larger than that of R8 (βe = 0.2), but not by much. This difference

is probably due to the fact that the current layer breaks into more islands initially

in the low-β reconnection than in the high-β reconnection (Figure 5.4). More islands

in the low-β reconnection will drive the current sheet thinner to de scale faster and

therefore faster reconnection rate, as discussed in Chapter 2.

5.3.2 Energy evolution

We now consider how the energy conversion differs for different runs. Table 5.2

lists the fraction of dissipated magnetic energy Δεb/εb0, the ratio of electron energy

gain ΔKe and ion energy gain ΔKi to their initial energies at the end of the simula-
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Figure 5.3 Reconnection rate for different runs. (a) 3 runs with the same βe = 0.02.
R1 and R3 have mi/me = 25 but different plasma temperature. R5 has a mass ratio
mi/me = 100. (b) 2 runs with the same plasma temperature but different magnetic
field strength. The corresponding βe is 0.007 for R6 and 0.2 for R8.

(a)

(b)

(c)

Figure 5.4 The out-of-plane current density jy for (a) run R8, (b) run R7 (c) run
R6 at tΩci = 27.5.
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tions. Several trends can be seen from simulations. The magnetic energy conversion

is more efficient in low-β reconnection. About 38% of magnetic energy get converted

in R1-R5 which have the same plasma βe = 0.02. The fraction increases to 42% in

R6 with βe = 0.007 but decreases to 29% in R8 with βe = 0.2. One possible reason

is that the reconnection rate is higher in lower-β reconnection, as discussed in the

previous section. Another possible reason is that more magnetic islands in the low-

β reconnection will convert more magnetic energy through magnetic island merging

processes. The reconnection in low-β plasma is more powerful at energizing particles.

Ke increases by 57%, and Ki increases by 54% in run R8 (βe = 0.2). As the free en-

ergy increases with lower plasma β, Ke increases 13.29 times, and Ki increase 28.05

times in run R6 (βe = 0.007). The low-β reconnection is more efficient at energizing

ions. This can be seem from runs R8, R7, R1 and R6 which have different plasma β.

We see that ΔKe/ΔKi > 1 for R8, while the ratio decreases to 0.47 for run R6. The

possible reason is that the acceleration mechanism allows ions to gain energy faster

than electrons. For example, the Fermi mechanism accelerates particles proportional

to its energy. If ions can gain energy faster than electrons initially, they can get

accelerated more efficiently latter. We will examine a pickup process in the next sub-

section by tracking particle trajectories. As the energization becomes more efficient

in the low-β reconnection, the difference between ΔKe and ΔKi will get larger. Re-

connection is more efficient at accelerating electrons than ions in a low temperature

plasma. Comparing R1, R2 and R3 with different plasma temperature but the same

βe, ΔKi/ΔKe decreases from 1.74 for R1 to 1.06 for R3. Finally, ions gain more en-
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ergy than electrons for cases with higher mass ratio. We see that ΔKi/ΔKe > 2 when

mi/me = 100 (run R5), which is larger than that when mi/me = 25 (run R1-R4).

5.3.3 Particle acceleration

Energy conversion during reconnection leads to efficient particle acceleration. Fig-

ure 5.5 shows the time evolution of particle energy spectra for run R1 with βe = 0.02

and R8 with βe = 0.2. Embedded plots are the time evolution of the maximum

particle energy. The final energy spectrum (red) for run R1 develops prominent non-

thermal tail. The maximum electron energy is 500 times larger than its initial thermal

energy εth, and the maximum ion energy is 1500 times of its thermal energy. For run

R8 (βe = 0.2), the nonthermal tail is not as obvious as case R1, and the final energy

distribution is close to a thermal distribution. The maximum energy is about 40εth

for electrons and 80εth for ions, an order of magnitude lower than that of run R1.

More efficient energy conversion in low-β reconnection drives more efficient particle

acceleration. This is not surprising since the particle acceleration and the energy

conversion are intrinsically related.

To reveal the nonthermal nature of the spectrum tail, we plot the final energy

spectra for all runs and for both electrons and ions in Figure 5.6. For electrons, we fit

the power-law spectrum over the whole distribution since the thermal component and

nonthermal component show no clear separation. For ions, we first subtract the lower-

energy thermal core (a Maxwellian distribution) to obtain the nonthermal component,

then fit the power-law spectrum over the nonthermal component. From Figure 5.6 (a)

and (c), we see that the spectrum develops power-law tail f(ε) ∼ ε−p with p close to
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(a) (b)

(c) (d)

Figure 5.5 Time evolution of particle energy spectra for run R1 and R8. The lines
with different colors are particle spectra at different times. Curves are evenly spaced
in time interval of ΔtΩci = 25 for R1 and tΩci = 50 for R8. The dashed line is
the initial thermal distribution. The embedded plots give the time evolution of the
maximum energy εmax normalized to the initial thermal energy εth. (a) Electron
energy spectra for run R1. (b) Ion energy spectra for run R1. (c) Electron energy
spectra for run R8. (d) Ion energy spectra for run R8.

1 for both electrons and ions for R1 (βe = 0.02) and R6 (βe = 0.007). The power-law

spectrum extends about one decade in energy. For R7 (βe = 0.07), the power-law

index p ∼ 1.51 for electrons and ∼ 1.37 for ions, and the power-law extends a smaller

range in energy than the low-β runs. For R8 (βe = 0.2), the spectrum is close to a

thermal distribution, and there is no power-law tail. Figure 5.6 (b) shows the energy

spectra for R2, R3 and R4 with the same βe but different plasma temperature. These

runs have the same mass ratio mi/me = 25. Also plotted is the spectrum for R5
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with mi/me = 100 and βe = 0.02 as comparison. The spectra for all runs develop a

power-law spectrum with a power-law index p ∼ 1. When mi/me = 100, the electrons

have a spectrum ∼ ε−1.22, slightly steeper than the runs with mi/me = 25. Panel

(d) is similar to (b) but for ions. We see that ions have a spectrum ∼ ε−0.79, even

flatter than the runs with mi/me = 25. This is probably due to that reconnection

with mi/me = 100 is more efficient at accelerating ions than electrons, as given

in Table 5.2.

The extended hard power-law spectrum contains a large fraction of nonthermal

particles. We get the nonthermal component fnt(ε) by subtracting a Maxwellian

distribution fitting the lower-energy thermal distribution. Integrate it over ε, we

obtain the number Nnt and kinetic energy Knt of the nonthermal particles. Table 5.2

shows the nonthermal fraction Fnte = Nnte/N0 for electrons and Fnti = Nnti/N0 for

ions. The nonthermal fractions are about 50% for the run R1-5 (βe = 0.02). They

increase to over 60% for R6 (βe = 0.007) but decrease to ∼ 40% for run R7 (βe = 0.07)

and ∼ 20% for run R8 (βe = 0.2). The nonthermal fractions for R5 (mi/me = 100)

are lower than that of R1-4 (mi/me = 25) with the same βe. This is probably due

to that the run time ∼ 600Ω−1
ci for R5 is shorter than in the other runs with run

time over > 800Ω−1
ci for R1-4. Figure 5.3 shows that the reconnection rate for run

R5 is still decreasing at tΩci = 600, suggesting that the reconnection is still ongoing.

The nonthermal particles contain even larger fractions of total energy of the systems

because their energies are higher than the low-energy part. The fraction is 39% for

electrons and 47% for ions for R8 with the highest βe. It can go over 90% in the
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(a) (b)

(c) (d)

Figure 5.6 Particle energy spectra for different simulations. f(ε) ≡ dN/dε. We
normalize the kinetic energy ε to the initial thermal energy εth, which is same for
both electrons and ions in our simulations. (a) Electron spectra for 4 runs with
different plasma β. R8 has a βe = 0.2. R7 has βe = 0.07. R1 has βe = 0.02. R6 has
the lowest βe = 0.007. (b) Electron spectra for 4 runs with the same β, but different
plasma temperature. Among them, R5 has a different mass ratio mi/me = 100. (c)
Ion spectra for the 4 runs with different plasma β. (d) Ion spectra for the 4 runs with
the same plasma β but different plasma temperature. All the dashed lines are power-
law spectrum through fitting. For electrons, we fit the power-law spectrum over the
whole distribution. For ions, we subtract the lower-energy thermal core to get the
nonthermal component (thin solid lines in (c) and (d)). We then fit the power-law
spectrum over the nonthermal component.
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lower-β cases. The large nonthermal fractions suggest that the nonthermal particles

can dominate the reconnection process of low β plasma.

We track individual particles in run R1 to identify various particle acceleration

regions. We choose electrons that are energetic by the end of the simulation. These

electrons are accelerated either in X -type regions by the parallel electric field and

reconnection electric field, in contracting magnetic islands through the Fermi mech-

anism or in island merging regions by the anti-reconnection electric field. Figure 5.7

shows three typical electron trajectories in this simulation. The electron in Figure 5.7

(a) enters the reconnection region when two islands are merging. It bounces twice and

get energized at x ∼ 116−124di in the large island formed by the merging islands. It

then enters the anti-reconnection region and get accelerated in 10Ω−1
ci . We calculate

the electron’s y position by integrating vy over time in this 2D simulation. During the

fast energization, this electron moves along the y-direction to −40di. This electron is

then circling around the large island as the whole island is moving towards the right

direction. This rightward motion induces opposite Ey ≈ vxBz at the two sides of the

island as Bz changes sign (frame tΩci = 241.7). As the electron is drifting along the

positive y-direction (x ∼ 120− 160di), it gets accelerated at one side and decelerated

at the other side. The net effect is an acceleration because this island is contract-

ing, which is an efficient particle acceleration mechanism during reconnection (Drake

et al., 2006). In the end, this island merges with the large island at the boundary,

and the electron gets trapped at the left side by the mirror force. The top panel of

(d) shows the energy evolution of this electron. Figure 5.7 (b) shows another electron

getting accelerated through the island contracting mechanism. It gets accelerated at
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the X -type region (x ∼ 90di) when it enters the reconnection region. Both its energy

and y-position have a jump at tΩci = 116. The electron is then accelerated in three

regions of contracting islands shown with different sizes at tΩci = 116, tΩci = 222.4

and tΩci = 497.9. The electron gets energized every time it passes the two sides of

these islands. As the island gets larger, the electron has to travel longer around the

island to get accelerated. As a result, the acceleration becomes slower, as shown in

the middle panel of (d). The electron shown in Figure 5.7 (c) enters the same is-

land merging region as the electron in (a), but it does not pass the anti-reconnection

region. Instead, it gets efficiently accelerated in the compressed region when these

two merging islands are getting close to each other. The electron is then trapped in

the merged large island and is convected with the reconnection outflow to x ∼ 160di.

This electron is not circling around the island but shows meandering characteristics at

tΩci = 265.9. The electron does not gain much energy or drift along the y-direction.

After some meandering, the electron is then trapped at the left end of the largest

island by the mirror force. The acceleration is more efficient than that of the electron

in (b) as the electron does not have to travel around the whole island.

Figure 5.8 shows three typical ion trajectories in run R1. In general, ions

also gain energy at the X -type region, the island contracting regions and the island

merging regions similar to electrons. One difference between ion acceleration and

electron acceleration is that ions can be “picked-up” by the reconnection outflow

when they enter the reconnection region. The ions gain energy ∼ 0.5miv
2
A is much

larger than the electron energy gain ∼ 0.5mev
2
A during this process. For example, the

ion in (a) enters the reconnection region at x ∼ 90di and then moves to x ∼ 100di
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Figure 5.7 Three typical electron trajectories in run R1. The top panels of (a)–(c)
show the trajectories in the simulation x − z plane. The background is the out-of-
plane electric field Ey. We plot Ey at three time frames, labeled at the top in (a)–(c).
The green crosses are the particle position at that time step. The middle panels of
(a)–(c) show the electron energy evolution with its x position. The bottom panels
show the electron’s y position versus its x position. We calculate the y position by
integrating vy over time. The green crosses correspond to 3 time frames indicated
in the top panels. Note that the x can be larger than 200di in these two plots. As
particles can cross the right boundary and come back from the left boundary due
to the periodic boundary condition, we shift the leftmost trajectory points to the
right. (d) The time evolution of the electron kinetic energies for the three electrons
plotted in (a)-(c). Again, the green crosses corresponds to the three time steps for
each electron.
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without a whole gyromotion. Its energy gradually increases (top panel of (d)) and the

ion drifts along the positive y-direction during this period. The ions in (b) and (c)

also have similar phase at 200− 250Ω−1
ci and 120− 150Ω−1

ci , respectively. The “pick-

up” mechanism was originally proposed for heavy ions (e.g., α particles, Drake et al.,

2009a,b), but it seems to work for protons too. The ion in (a) gets further accelerated

by the contracting islands as shown in time frame tΩci = 193.3 and tΩci = 531.7. It

drifts along the y-direction to 160di at the end of the simulation. The ion in (b)

gets efficiently accelerated in an island merging region from 250Ω−1
ci to 300Ω−1

ci . It

gets efficiently energized because it drifts along the negative y-direction, same as Ey.

Figure 5.8 (c) shows that one ion gets accelerated through the pickup process first

and then through bouncing back and forth inside the contracting island.

5.3.4 Energy conversion in different regions

Examining particle trajectories can help identify various acceleration regions,

but the fact that we can only trace a small number of them makes it hard to decide

which sites are more important in leading to the bulk acceleration of > 50% of the

particles. Besides, the trajectories show that particle acceleration is associated with

particle drift motions, but we can not tell which drift motion is the dominate one.

To answer these questions, instead of tracking individual particles, we can study

macroscopic quantities that characterize the energy conversion processes.

The conversion between the kinetic energy and plasma kinetic energy is through

the work done by the electric force on the particles
� � t0

0
j ·Edtdr. For a single particle
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Figure 5.8 Typical ion trajectories in run R1. The plots are similar to electrons
in Figure 5.7. (a) One ion has three phases of acceleration. The plot in (b) and (c) is
similar except that we plot one frame of Ey. (d) Time evolution of ion energy γ − 1
for the three ions.

species, the parallel and perpendicular current densities are

j� = qnv�, j⊥ = qnv⊥ (5.1)

where q is the particle charge, n is the particle number density, v� and v⊥ are the

parallel and perpendicular bulk velocities obtained by averaging over the particles.

The parallel and perpendicular directions are with respect to the local magnetic field

direction. ε̇c ≡ j ·E is the energy conversion rate between the magnetic energy and

the plasma kinetic energy, where E is the electric field. Figure 5.9 shows ε̇c through
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j� and j⊥ for run R1. At the beginning of the simulation, j� ·E is comparable with

j⊥ ·E for electrons but negligible for ions. Electrons get energized by parallel electric

field along the reconnection separatrix when they enter the reconnection region (Drake

et al., 2005; Egedal et al., 2012). These electrons are further accelerated in the X -type

region by the reconnection electric field (Fu et al., 2006). The parallel electric field is

inefficient at accelerating ions because ions have smaller parallel velocity and larger

mass than electrons. This leads to weaker acceleration as dγ/dt = (q/m)v · E� ∼

v�/m, where γ is the Lorentz factor. As the reconnection evolves, j⊥ · E becomes

dominant for both electron and ions. Towards the end of the simulation, j⊥ · E

accounts for over 80% of the energy conversion from the magnetic energy to the

particle kinetic energies. Table 5.3 and Table 5.4 summarize the energy conversion εc

through j� and j⊥ for electrons and ions, respectively. The parallel energy conversion

is ∼ 10% for both electrons and ions. The perpendicular energy conversion is ∼

80% for electrons and increases to over 90% for ions. This suggests that particles

are preferentially accelerated along the perpendicular direction to the local magnetic

field.

We use a drift-current approximation to separate j⊥ into different terms, as

shown in Section 4.3.3, to reveal the effect of j⊥ and hence the particle perpendicular

motions. Assuming a gyrotropic pressure tensor (particles are magnetized), we get

j �⊥ = jc + jg + jm + jp + ρs
E ×B

B2
(5.2)
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Figure 5.9 Energy conversion rate ε̇c through parallel current j� ·E, perpendicular
current j⊥ ·E and total current (j� + j⊥) ·E for electrons (top) and ions (bottom).
The electric field E is from the PIC simulation. It includes both ideal and non-ideal
electric fields. K̇e and K̇i are the energy change rate for electrons and ions. They are
all normalized to mec

2ωpe. The energy conversion for the other runs are summarized
in Table 5.3 and Table 5.4.

Table 5.3. Energy conversion εc due to different currents for electrons. The results
are the ratios of different terms to ΔKe, e.g.,

�
jc ·Edxdt/ΔKe

Run j� ·E j⊥ ·E j �⊥ ·E jc ·E jm ·E jg ·E jp ·E ja ·E

R1 0.10 0.81 0.77 1.51 -0.30 -0.58 0.04 0.10
R2 0.03 0.87 0.74 1.39 0.05 -0.80 0.03 0.07
R3 0.10 0.69 0.61 1.45 -0.20 -0.72 0.03 0.05
R4 0.11 0.85 0.82 1.28 -0.10 -0.53 0.04 0.13
R5 0.02 0.82 0.84 1.75 -0.03 -1.02 0.02 0.12
R6 0.04 0.87 0.98 1.34 -0.04 -0.52 0.06 0.14
R7 0.02 0.74 0.63 1.63 0.01 -1.12 0.02 0.09
R8 -0.08 0.73 0.43 2.43 -0.36 -1.70 0.03 0.03

Note. — j� is due to parallel electric field. j⊥ is due to perpendicular electric
field. jc is due to curvature drift. jm is due to the magnetization. jg is due to
gradient B drift. jp is due to polarization drift. ja is due to the agyrotropic
pressure tensor. j �⊥ = jc + jm + jg + jp + ja
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Table 5.4. Energy conversion εc due to different currents for ions. The results are
the ratios of different terms to ΔKi, e.g.,

�
jc ·Edxdt/ΔKi

Run j� ·E j⊥ ·E j �⊥ ·E jc ·E jm ·E jg ·E jp ·E ja ·E

R1 0.10 0.91 0.88 1.78 -0.31 -0.70 0.17 -0.06
R2 0.10 0.92 0.99 1.74 0.15 -1.04 0.20 -0.06
R3 0.08 1.00 1.19 2.11 -0.15 -0.98 0.42 -0.21
R4 0.10 0.92 0.87 1.72 -0.08 -0.89 0.14 -0.02
R5 0.10 0.90 0.94 1.93 0.03 -1.14 0.24 -0.02
R6 0.12 0.91 0.99 1.47 -0.01 -0.60 0.16 -0.03
R7 0.10 0.94 0.97 2.30 0.13 -1.54 0.26 -0.18
R8 0.04 1.00 0.90 3.54 -0.28 -2.29 0.18 -0.25

Note. — jc is due to curvature drift. jm is due to the magnetization. jg is due
to gradient B drift. jp is due to polarization drift. j� is due to parallel electric
field. j⊥ is due to perpendicular electric field. ja is due to the agyrotropic
pressure tensor. j �⊥ = jc + jm + jg + jp + ja

where p� and p⊥ are parallel and perpendicular pressure with respect to the local

magnetic field; I is the unit dyadic; b̂ = B/B is the unit vector along the magnetic

field. We calculate p� and p⊥ using the particle distribution f in each cell. jc is due

to particle curvature drift, jm is due to the magnetization (originated from particle

gyro-motion), jg is due to particle gradient B drift, jp is due to particle polarization

drift. TheE×B drift does not contribute to the energy conversion since jE×B ·E = 0.

A gyrotropic pressure tensor assumes that particles are well-magnetized. In

the low-β simulations, electrons are well-magnetized since the electron gyroradius

is much smaller than the fields variation scale de as ρe/de =
�

βe/2 � 1. Note,

ρe = meve/eB can be comparable with de in the diffusion regions with weak magnetic

field or for energetic electrons, and it can be larger than de in high-β simulations
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where
�
βe/2 ∼ 1. The non-gyrotropic effect gets more important for ions as their

gyroradii are much larger than that of electrons. To estimate the effect, we define an

agyrotropic current density as

ja ≡ − c

B2

�
∇ · (P− p⊥I− (p� − p⊥)b̂b̂)

�
×B (5.3)

which measures the differences of using a full pressure tensor P and a gyrotropic

pressure tensor.

Figure 5.10 Energy conversion due to different drift currents for electrons (top) and
ions (bottom) for run R1. jc is due to particle curvature drift. jg is due to particle
∇B drift. jm is due to magnetization. j ��⊥ ≡ jc + jg + jm, which does not include the
current densities due to particle polarization drift and agyrotropic pressure tensor.
K̇e and K̇i are the energy change rate for electrons and ions, respectively. They are
all normalized to mec

2ωpe.

Figure 5.10 shows the energy conversion rate ε̇c due to curvature drift current

jc,∇B drift current jg and magnetization jm for run R1. The current due to curvature

drift jc gives most of the energy conversion, suggesting particles are preferentially
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accelerated when they are curvature drifting along the perpendicular electric field.

The current due to ∇B drift gives non-negligible energy loss, although it gives net

particle energy gain in the flux pileup region (Hoshino et al., 2001; Li et al., 2015).

The energy conversion through magnetization current jm varies between energy gain

and energy loss, but the net effect is small compared to jc and jg. We also plot

j ��⊥ = jc + jg + jm in Figure 5.10. In general, j ��⊥ captures the time evolution of ε̇c

well, but it misses some features. For example, j ��⊥ underestimates ε̇c for ions at the

beginning of the simulation. This might be due to the fact that jp or ja are not

included in j ��. Thus, we include jp and ja in Figure 5.11 for run R1. For electrons,

Figure 5.11 Energy conversion rate through perpendicular current densities for elec-
trons (top) and ions (bottom) for run R1. j⊥ = nqu⊥, and j ��⊥ is the summation of the
current densities due to particle curvature drift, ∇B drift and magnetization. jp is
due to particle polarization drift. ja is due agyrotropic pressure tensor. The plotted
quantities are normalized to mec

2ωpe.

ja yields negligible effect because electrons are well-magnetized at βe = 0.02. jp also

gives a negligible effect because the polarization drift is proportional to the electron
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mass. Towards the end of the simulation, jp yields 4% of the electron energy gain;

ja yields 10% of the electron energy gain. For ions, both ja and jp give noticeable

effects. Comparing j ��⊥ (red) and (j ��⊥ + ja) ·E (green), ja yields a cooling effect when

ions are more energized later in the simulation (> 75Ω−1
ci ). jp is more important at

the beginning of the simulation when the outflow accelerates along the x-direction.

It overestimates the perpendicular current densities. This might be due to numerical

uncertainties when calculating the time derivative du/dt which requires a u field

with high time resolution (< ω−1
pi ), while the time resolution of u fields output in

run R1 is 12.5ω−1
pi . jp gives 17% of the ion energy gain, while ja contribute 6% of

the ion energy loss in run R1. We summarize the contributions of all drift currents

in Table 5.3 and Table 5.4. For all runs, jc · E is dominant; jp gives non-negligible

particle cooling; jm gives cooling effect for 6 of the 8 runs and can be over 30% for

run R1 and R8. For electrons, jp ·E contributes ≤ 6% of the energy conversion, and

ja contributes ≤ 15% of the energy conversion. For ions, jp · E gives 14% − 42%

of the ion energy gain; ja ·E gives net ion cooling and it gets more important with

higher β (run R7 and R8) because of increasing fraction of unmagnetized particles in

high-β plasma.

Next, we use the drift-current analysis to study the energy conversion in differ-

ent acceleration regions. Figure 5.12 gives the energy conversion in one reconnection

exhaust (145di < x < 185di) for run R1 at tΩci = 137.5. For both electrons and ions,

jc ·E is the dominant term, and jg ·E cools the particles. Both terms peak in the cen-

ter of the exhaust where the curvature of the magnetic field and ∇B are the largest.

jc ·E ≈ (p�B×κ/B2) · (−u×B) is positive as u and κ are along the same direction.

104



jg · E ≈ (p⊥/B3)(B × ∇B) · (−u × B) is negative as B × ∇B and −u × B are

along the opposite directions. jc ·E is stronger than jg ·E in this region, so particles

gain energy passing through the reconnection exhausts. The other terms are small

compared to these two terms. j� · E is noisy as Ex shows electron holes (top-right

panel of Figure 5.13 (a)), which has been associated with a pseudo electric potential

that can accelerate electrons (Egedal et al., 2012), but the effect is small compared

to the other terms in out simulations. When particles stream along the field line to

the positive x-direction, electrons get decelerated while ions get accelerated. jp ·E is

negligible for electrons compared to that for ions. It accelerates ions when the flow

speed increases along the x-direction (x ∼ 150 − 175di), as jp ∼ B × u̇i is parallel

to −u×B. It decelerates ions when the flow slows down when it hits the magnetic

structure at x ∼ 180di. jm ·E strongly accelerates particles right outside the center

of the reconnection exhaust. This is due to the enhanced jp driven by the strong

gradient of perpendicular pressure p⊥. In the center of the exhaust, ∇ × (B/B2)

becomes large due to a weaker B and a stronger ∇×B since the magnetic field must

rotate 180◦ across a thin layer (∼ de). The strong acceleration and deceleration cancel

each other, and the jm ·E gives negligible effect. The energy conversion due to the

agyrotropic current ja · E peaks at the center of the current sheet where particles

can become unmagnetized due to the weak magnetic field. For electrons, this region

is narrow, so jm ·E is negligible. For ions, the region is comparable with the whole

reconnection exhaust, so the effect is noticeable.

Figure 5.14 shows the energy conversion in a region where two magnetic islands

are merging (x ∼ 115−120di). A secondary current sheet along the z-direction forms
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Figure 5.12 Energy conversion in the reconnection exhaust for run R1 at tΩci = 137.5
for (a) electrons, (b) ions. The top two rows plot the 2D contour of different terms.
They are normalized to 0.1en0v

2
AB0, where vA is the Alfvén speed. The bottom panels

are the accumulation of the top panels along the x-direction, e.g.,
� x

x0

� zmax

zmin
jc ·Edxdz.

Overplotted are the directions of magnetic curvature κ, bulk flow velocity u, ∇B,
the magnetic field B, the acceleration of the ion bulk flow velocity u̇i = dui/dt and
the gradient of the perpendicular pressure ∇p⊥.

(a) (b)

tΩci = 137.5 tΩci = 152.5

Figure 5.13 (a) Electric field and mangetic field at tΩci = 137.5, corresponding
to Figure 5.12. (b) Electric field, magnetic field and flow velocity at tΩci = 152.5,
corresponding to Figure 5.14. The magnetic field is normalized to B0. The electric
field is normalized to vAB0. The velocity is normalized to vA/2.
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in this process at x ∼ 117di by antiparallel Bz as shown in the bottom left panel

of Figure 5.13 (b). This current sheet has a guide field along y-direction. This guide

field originates from the initial force-free setup. Figure 5.14 shows efficient electron

acceleration by parallel electric field, consistent with previous results where efficient

parallel acceleration occurs in a guide-field reconnection (Dahlin et al., 2014) (see

also next chapter). E� is, however, inefficient at accelerating ions. This is because

dγ/dt = (q/m)v · E� ∼ v�/m is much smaller for ions as ions have much smaller

v� and larger m than that of electrons. Both jc · E and jg · E give strong energy

conversion in the island merging region. Similar as the main reconnection site (Bx

reconnects), jc · E strongly accelerates particles, while jg · E strongly decelerates

particles. jp ·E is negligible for electrons but important for ions. It decelerates ions

at x ∼ 117 − 120di and z ∼ −5 − 5di due to the decelerated vz. The closed field

lines containing the two small islands block the bulk flow vz at z ∼ −5di and 5di,

as shown in the bottom right panel of Figure 5.13 (b). ja · E is comparable with

jc ·E, suggesting that the gyrotropic pressure tensor is not a good assumption in the

island merging region. This is because particle gyroradii are large as the magnetic

field is weak in islands merging region (Figure 5.13 (b) left panels) and the particles

are pre-accelerated to higher energies. Note that ja ·E accelerates both electrons and

ions in the island merging region.

Besides the island merging region, contracting islands are also efficient at ac-

celerating particles. The large island formed by the merging islands in Figure 5.14 is

contracting as indicated by the opposite vx at the two opposite sides of this island

(top right panel of Figure 5.13). The dominant positive vx indicates this island is
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Figure 5.14 Energy conversion in an island merging region for run R1 at tΩci = 152.5
for (a) electrons and (b) ions. Overplotted arrows are the direction of magnetic field
curvature κ, the bulk flow u, the gradient of magnetic field ∇B and the acceleration
of the ion flow.

moving rightward, opposite to the contracting direction of the right side of this is-

land. This leads to a region (x ∼ 120− 127di) with small vx hence weak Ey ≈ vxBz.

We limit the following discussion in the left side (x ∼ 105− 115di) of this contracting

island. Both jc · E and jg · E accelerates particles as κ, ∇B and u are along the

same direction. jp ·E is efficient at decelerating ions as the bulk flow is slowing down

along the x-direction (top right panel of Figure 5.13), so jp ∼ B × u̇i is along the

same direction as −u ×B. The other terms are negligible compared to these three

terms. Notice that jm ·E is efficient at local regions, but its total effect is negligible

when integrated over the entire simulation box.

5.4 Discussion and Conclusion

Nonthermal particle acceleration is a central topic of space physics and astro-

physics. In this chapter, we perform a series of 2D kinetic simulations to examine the

108



particle acceleration during magnetic reconnection in a nonrelativistic plasma with

electron βe ranging from 0.007 to 0.2. We achieve the low-β of a thin current sheet

by increasing the magnetic field strength or decreasing the plasma temperature. We

study both electrons and ions.

The initial current sheet breaks into a chain of magnetic islands, which interact

and coalesce with each other. Magnetic energy gets converted into plasma energy dur-

ing this process. Although the reconnection rate only weakly increase when plasma β

decreases, the energy conversion is much more efficient in a low-β reconnection than

in a high-β reconnection. We find that the reconnection in a low-temperature plasma

is more efficient at accelerating electrons than in a high-temperature plasma. We also

find that the low-β reconnection is more efficient at accelerating ions than electrons.

The highly efficient energy conversion in the low-β reconnection drives efficient non-

thermal particle acceleration yielding over 50% of particles being nonthermal in the

low-β reconnection. Both nonthermal electrons and ions develop power-law energy

distributions with power-law index p ∼ 1 in the low-β regime (βe ≤ 0.02). The highly

efficient electron acceleration could explain the highly efficient nonthermal electron

acceleration during solar flares. However, the power-law spectrum is much harder

than the observed electron spectrum (p > 2). In addition, the maximum particle

energy is limited by the hard spectrum and the total dissipated magnetic energy.

One possible reason for the hard spectrum may be the periodic boundary conditions

we use. Such a boundary condition leads to confinement of particles. For a system

such as the reconnection region of solar flares, open boundary conditions for parti-

cles may be more appropriate. Analytically, this could lead to a steeper power-law
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spectrum (Guo et al., 2014, 2015). Our preliminary results show that the power-law

index p can be larger than 2 in simulations with open boundaries.

We identify various particle acceleration regions through particle tracking in

our simulation. Both electrons and ions get efficiently accelerated when they are

drifting along the electric field induced by the bulk flow in the X -type region, con-

tracting magnetic islands, anti-reconnection region where two islands are merging.

Furthermore, protons (ions) gain energy when they are “picked-up” by the reconnec-

tion outflow. This initial fast energy gain makes ions more energetic than electrons,

so that they can be accelerated more efficiently through the Fermi mechanism later

in the simulation. This provides a good explanation on why ions gain more energy

than electron in our simulations.

By studying j · E, we find that over 80% of the energy conversion is in the

perpendicular direction to the local magnetic field. We construct j⊥ by averaging the

particle drift motions and studying the energy conversion through the perpendicu-

lar direction. The major energy conversion mechanism is through particle curvature

drift along the electric field induced by the reconnection outflow in the reconnection

exhausts, at the two sides of contracting magnetic islands and in the islands merg-

ing regions. The ∇B gives non-negligible deceleration in the reconnection exhausts

and island merging regions but significant acceleration at the two sides of contracting

magnetic islands. The current due to particle polarization drift is negligible for elec-

trons. Polarization drift accelerates ions in the reconnection exhausts where the flow

is accelerating, but decelerates ions at the two sides of contracting islands and island

merging regions where the flow is decelerating. The parallel electric field accelerates
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ions but decelerates electrons in the reconnection exhausts; it accelerates electrons

but not ions in the island merging regions. The current due to magnetization gives

both acceleration and deceleration in the reconnection exhausts and the island merg-

ing regions but the net effect is negligible. By considering the current density due to

non-gyrotropic pressure tensor, we find that it gives particle acceleration in the island

merging regions. This suggests that meandering particles can subject to acceleration

due to non-gyrotropic pressure tensor.

In summary, we find that magnetic reconnection in nonrelativistic low-β proton-

electron plasam is highly efficient at accelerating both electrons and ions into non-

thermal energies. The plasma β is the controlling factor of particle acceleration.

Either decreasing T or increasing B0 have similar effects on the energy conversion

and particle acceleration processes.
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CHAPTER 6

PARTICLE ACCELERATION DURING MAGNETIC

RECONNECTION WITH A GUIDE FIELD

6.1 Introduction

A guide field is the magnetic field component that is normal to the reconnect-

ing component. Presence of guide field is expected to be natural in solar corona.

Observations have shown that the guide field strength is correlated with the HXR

emission, hence the nonthermal electron acceleration (Qiu et al., 2010). The guide

field can vary throughout one solar flare (about 0.4–1.2 times of the reconnecting

component in Qiu et al. (2010)).

A guide field changes the reconnection process through modifying the recon-

nection layer. Without a guide field, the transition from the collisional regime to

the collisionless regime occurs when the current sheet thickness δCS approaches ion

inertial length di. With a guide field, the transition occurs when δCS ∼ ρs (Rogers

et al., 2001), where ρs = cs/Ωci is the ion sound radius, cs =
�
ΓkB(Ti + Te)/mi is

the ion sound speed, Γ is the adiabatic index.

di
ρs

=
c

cs

Ωci

ωpi

=
c

cs

vA
c

=
vA
cs

(6.1)
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In coronal plasma, vA > cs (see Appendix A), so that di > ρs. Depending on the

guide field strength, the structure of the reconnection diffusion region is different due

to the presence of pressure anisotropy (Le et al., 2013; Egedal et al., 2013). A guide

field can lead to multiple resonance layers in 3D reconnection (Daughton et al., 2011;

Baalrud et al., 2012; Liu et al., 2013b; Huang and Bhattacharjee, 2016) rather than

only one resonance layer at the middle plane in 2D reconnection (see Section 2.1.4).

The multiple resonance layer can interact with each other, leading to complex current

layers (Liu et al., 2013b; Guo et al., 2014).

The effects of different acceleration mechanisms vary with the guide field

strength. As the guide field strength increases, the parallel acceleration becomes

more important for electrons (Dahlin et al., 2014), in contrast to the negligible parallel

acceleration in reconnection without a guide field as discussed in the previous chap-

ters. In addition, reconnection with a guide field preferentially accelerates heavy ions

through a pickup process (Drake et al., 2009a,b; Drake and Swisdak, 2014; Knizhnik

et al., 2011), in which unmagnetized heavy ions get “picked-up” by the reconnection

outflow. The energy gain is proportional to the ion mass, so that heavy ions gain

more energy.

However, these simulations have focused on high-β (β > 0.1) reconnection and

find no power-law distribution of particles. As shown in the previous chapters, low-β

reconnection without a guide field can efficiently accelerate both electrons and ions

to develop power-law distributions, it is therefore natural to ask how a guide field can

change the particle acceleration process in a low-β reconnection.
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In this chapter, we perform 2D kinetic simulations of magnetic reconnection

in a nonrelativistic low-β plasma (βe = 0.02 using the reconnecting component of

the magnetic field B0) with a series of guide field Bg/B0 = 0, 0.2, 0.5, 1.0 and 4.0.

We examine how the energy spectra for both electrons and ions vary as function of

Bg/B0.

In Section 6.2, we describe the numerical methods and parameters. In Sec-

tion 6.3 we present simulation results. In Section 6.4, we conclude on our simulations

results.

6.2 Numerical simulations

We carry out two-dimensional kinetic simulations using the VPIC code (Bow-

ers et al., 2008). The initial configuration is a force-free current sheet with an external

guide field Bg.

B = B0 tanh
�z
λ

�
x̂+ B0

�
sech2

�z
λ

�
+

B2
g

B2
0

ŷ (6.2)

corresponding to a magnetic field with uniform strength
�
B2

0 + B2
g rotating by

2 arctan(B0/Bg) across a layer with a half-thickness λ. We choose λ = di in all

simulations. di = c/ωpi = c/
�
4πnie2/mi is the ion inertial length. The plasma con-

sists of protons and electrons with mass ratio mi/me = 25. The initial distributions

for both electrons and protons are Maxwellian with uniform density n0 and temper-

ature Ti = Te = T0. We use the reconnection component B0 to define the plasma

β instead of the total magnetic field. β ≡ 2βe = 16πn0kT0/B
2
0 , where βe is the

electron plasma. We set βe = 0.02 for all simulations. The ratio of electron plasma
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frequency and gyrofrequency ωpe/Ωce = 1. The Alfvèn speed using the reconnecting

component of the magnetic field is vA = B0/
√
4πn0mi = 0.2c. The domain sizes are

Lx × Lz = 200di × 100di for all simulations. The number of particle per species per

cell is 200. We employ periodic boundaries along the x-direction and perfectly con-

ducting boundaries along the z-direction for fields. We employ periodic boundaries

along the x-direction and reflective boundaries along the z-direction for particles. We

add a long wavelength perturbation to induce reconnection (Birn et al., 2001).

6.3 Simulation results

A guide field changes the field structures. Figure 6.1 shows the in-plane electric

field Ez and the out-of-plane current density jy for all five cases of Bg/B0. In the

case without a guide field, Ez is dominated by the Hall electric field vyBx, forming

bipolar structures (e.g. x ∼ 95di in the top panel of (a)). When the guide field

becomes large (e.g. Bg = 4.0), Ez ∼ EyBy/Bz due to the constraint that the force

E ·B ∼ EyBy +EzBz is approximately zero (Drake et al., 2009a,b). Ez will be much

larger than the reconnection electric field Ey, since Bz ∼ 0.1Bx � By. Figure 6.1

(a) shows the transition from a case without a guide field to a case with a strong

guide field. The structure of jy also varies with Bg. In the cases which have no

guide field (Bg = 0) or weak guide field (Bg = 0.2), jy is located in the center of the

reconnection exhaust and close the reconnection X -line. As the guide field increases,

jy becomes centered along one pair of the reconnection separatrix. For example, in

the case with Bg = 0.5, jy is along the diagonal direction at x ∼ 105di. The different

structures of jy form due to the pressure anisotropy (Le et al., 2013), which can be
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generated in collisionless plasma due to the conservation of magnetic moment and the

longitudinal adiabatic invariant, and also by a fluid shear (e.g. Kunz et al., 2014) and

a parallel electric field (e.g. Egedal et al., 2013). Appendix C shows one derivation of

the generation of pressure anisotropy starting from the focused transport equation.

Table 6.1 lists the fraction of dissipated magnetic energy Δεb/εbx, the ratio

of electron energy gain ΔKe and ion energy gain ΔKi to their initial energies at the

end of the simulations. As Bg increases, Δεb/εbx decreases from 49% to 14%, so that

less magnetic energy is converted into plasma kinetic energy in reconnection with a

stronger guide field. Particles gain less energy in the cases with a stronger guide field.

The electron energy gain decreases slower with Bg than the ion energy gain. As a

result, electrons gain more energy than ions in the cases when Bg ≥ 1. In contrast,

ions gain more energy than electrons when Bg < 1. This is consistent with previous

chapters. When Bg = 0, we find ion acceleration dominates electron acceleration.

Figure 6.2 and Figure 6.3 show the time evolution of the electron and ion

spectra. Both electron and ion spectra develop prominent nonthermal tails. The

electron spectra (Figure 6.2) appear to be power-law in the energy range (εth−10εth)

in the cases with a moderate guide field (Bg ≤ 1). The power-law spectrum extends

to a higher energyrange in the case with a strong guide field.

Comparing to electrons, it is not obvious if the ion energy spectra are power-

law. We do a power-law fitting below to check confirm they are power-laws. In the

cases with a moderate guide field, the maximum particle energy saturate at tΩci ∼

200 − 400. In the case with Bg = 4, the maximum energies keeps increasing until

tΩci ∼ 600. The electron maximum energy does not vary much with Bg, but the
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(a)

(b)

Figure 6.1 In-plane electric field Ez and out-of-plane current density jy at tΩci = 100
except that the case with Bg = 4.0 is at tΩci = 150. Ez is normalized by cB0. jy is
normalized by n0ce.
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Table 6.1. Energy conversion for different runs

Bg/B0 |Δεb|/εbx ΔKe/Ke0 ΔKi/Ki0 Fnte Fnti Knte/Ke Knti/Ki

0.0 0.49 4.85 8.43 0.55 0.52 0.92 0.95
0.2 0.47 5.30 7.23 0.54 0.52 0.90 0.94
0.5 0.40 4.32 5.25 0.50 0.45 0.87 0.90
1.0 0.28 3.03 2.92 0.41 0.35 0.80 0.80
4.0 0.14 2.16 0.97 0.19 0.19 0.70 0.52

Note. — ΔKe and ΔKi are the energy gain for electrons and ions, respectively.
Ke0 and Ki0 are the initial energy of electrons and ions, respectively. Nnth/N0 is the
fraction of nonthermal particles. |Δεb|/εbx is the fraction of dissipated magnetic
energy. Fnthe = Nnthe/N0 and Fnthi = Nnthi/N0 are the fraction of nonthermal
electrons and ions, respectively. Knthe/Ke and Knthi/Ki are the fraction energy
that nonthermal electrons and ions contain, respectively.

ion maximum energy decreases sharply from ∼ 1400εth in the case where Bg = 0 to

∼ 200εth in the case where Bg = 4.

Figure 6.4 shows the final energy spectra for all the cases for electrons in panel

(a) and ions in panel (b). For cases from Bg = 0 to Bg = 1.0, electrons develop into

power-law distribution f(ε) ∼ ε−1 for ε ∈ (εth, 10εth). The electron spectra become

steeper (power-law index ∼ 1.3) in the cases with Bg = 1, and the power-law energy

range is similar as the cases with a weaker guide field. The power-law energy range

shift to a higher energy range in the case with Bg = 4, but the power-law index still

remains ∼ 1.3. Note that there is spectral hardening at ε ∼ 100εth in the cases with

Bg = 0.5 and 1.0, which might provide an alternative explanation for the electron

spectral hardening at ∼ 300 keV in solar flare observations (Li et al., 2013).
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(a) (b)

(c) (d)

Bg = 0.2 Bg = 0.5

Bg = 1.0 Bg = 4.0

Figure 6.2 Time evolution of particle energy spectra for cases which have different
guide field. The lines with different colors are particle spectra at different times.
Curves are evenly spaced in a time interval of tΩci = 50. The dashed line is the initial
thermal distribution. The embedded plots give the time evolution of the maximum
energy εmax normalized by the initial thermal energy εth.

The ion energy spectra varies significantly with Bg. The power-law index is

∼ 1 in the cases with Bg = 0 and 0.2 and increases to 1.35 in the case with Bg = 0.5

and 1.74 in the case with Bg = 1. For Bg = 4, if we fit the nonthermal tail as a

power-law, we obtain a steep power-law distribution which has a power-law index

∼ 4.4. Such a steep power-law may explain the observed ion spectra which usually

have a power-law index ∼ 4 during solar flares (Lin et al., 2003).

As in previous chapters, we also did the drift-current analysis. Table 6.2 lists

the energy conversion due to different currents. Perpendicular acceleration dominates
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(a) (b)

(c) (d)

Bg = 0.2 Bg = 0.5

Bg = 1.0 Bg = 4.0

Figure 6.3 Similar as Figure 6.2 but for ions.

(a) (b)

Figure 6.4 Final energy spectra for cases with different Bg for (a) electrons, and (b)
ions. εth is the initial particle thermal energy. The thick solid lines are the energy
spectra. We shift it along the y-axis to clearly separate different cases. The thin solid
lines are the nonthermal part of the spectra by subtracting a low-energy Maxwellian
distribution. The dashed lines are the power-law fitting.
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Table 6.2. Energy conversion εc due to different currents for electrons. The results
are the ratios of different terms to ΔKe, e.g.,

�
jc ·Edxdt/ΔKe

Bg/B0 j� ·E j⊥ ·E jc ·E jm ·E jg ·E jp ·E ja ·E

0.0 0.05 0.88 1.46 -0.08 -0.75 0.04 0.08
0.2 0.12 0.76 0.68 -0.04 -0.06 0.04 0.13
0.5 0.23 0.68 0.41 -0.02 0.05 0.04 0.11
1.0 0.54 0.37 0.13 -0.005 0.02 0.05 0.05
4.0 0.91 0.05 0.015 -0.001 0.0004 0.014 -0.01

Note. — j� is due to parallel electric field. j⊥ is due to perpendicular
electric field. jc is due to curvature drift. jm is due to the magnetization.
jg is due to gradient B drift. jp is due to polarization drift. ja is due to
the agyrotropic pressure tensor.

parallel acceleration for electrons in the cases with Bg ≤ 0.5. Parallel acceleration

becomes comparable with perpendicular acceleration in the case with Bg = 1 and

dominates in the cases with Bg = 4. Among all these perpendicular currents, jc due

to the curvature drift is always dominant, and it gradually decreases with Bg. The

energy conversion due to the gradient drift only yields significant cooling in the case

with no guide field. The other terms are all small compared to jc · E. We show

in Appendix D that j⊥ ·E excluding the jp term yields compressional effect during

the energy conversion. This indicates that the decrease of the energy conversion and

particle acceleration with Bg is due to that the plasma is less compressible if there is

guide field. This result is consistent with previous resistive MHD simulations (Birn

et al., 2012).

Ions are different in that the perpendicular acceleration is always dominant.

The competing terms are jc · E and jp · E. The term due to the curvature drift
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Table 6.3. Energy conversion εc due to different currents for ions. The results are
the ratios of different terms to ΔKi, e.g.,

�
jc ·Edxdt/ΔKi

Bg/B0 j� ·E j⊥ ·E jc ·E jm ·E jg ·E jp ·E ja ·E

0.0 0.10 0.92 1.73 0.0087 -0.96 0.16 -0.06
0.2 0.13 0.89 0.86 0.0040 -0.14 0.13 0.19
0.5 0.24 0.77 0.35 0.0014 0.06 0.46 0.19
1.0 0.18 0.79 0.08 0.0036 0.04 0.87 0.17
4.0 0.14 0.78 0.002 0.0132 0.0007 0.27 0.23

Note. — j� is due to parallel electric field. j⊥ is due to perpendicular
electric field. jc is due to curvature drift. jm is due to the magnetization.
jg is due to gradient B drift. jp is due to polarization drift. ja is due to
the agyrotropic pressure tensor.

decreases with Bg as the plasma becomes less compressible. The relative contribution

from jp ·E increases Bg. Since ΔKi decreases with Bg as well (Table 6.1), the absolute

energy conversion due to jp · E does not change much. Note that for the case with

Bg = 4, the smaller contribution from jp ·E, compared to that when Bg = 1, is due

to the integration error since jp · E oscillates strongly between negative values and

positive values throughout the simulation. Thus, we can regard that jp ·E is a term

that does not change with Bg.

6.4 Conclusion

In this chapter, we performed a series of kinetic simulations with different

guide-field strength. We find that the energy conversion becomes less efficient as the

guide field increases. This is due to the fact that the plasma becomes less compressible

when there is a guide field. Comparing to previous chapters, we find that reconnection
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with no guide field preferentially accelerate ions, and reconnection with a strong guide

field preferentially accelerate electrons. Both electrons and ions develop into power-

law energy distributions, which become steeper as the guide field gets stronger. For

electrons, perpendicular acceleration is dominant in the cases with a weak guide field,

and the parallel acceleration becomes more important as the guide field increases. For

ions, the perpendicular acceleration is always dominant. The drift-current analysis

shows that the dominant acceleration mechanism for ions is the polarization drift

along the motional electric field.
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CHAPTER 7

CONCLUSION

Solar flares are the most explosive energy release in the solar system and the

main driver of space weather. They are driven by magnetic reconnection, a funda-

mental plasma process that rearranges the magnetic topology and converts the stored

magnetic energy into plasma kinetic energy. Numerous observations exist and support

the central role of the reconnection process in the energy conversion at solar flares.

One major unsolved problem in solar flare research is the acceleration of nonthermal

particles. The observations of above-the-loop-top hard X-ray sources strongly indicate

that the acceleration processes are associated with magnetic reconnection (Masuda

et al., 1994; Krucker et al., 2010; Krucker and Battaglia, 2014). Both modeling and

observations have suggested that during reconnection, current sheets break into a

large number of magnetic islands, which are efficient at accelerating particles either

through island contraction or island merging processes.

Particle acceleration during solar flares is a multi-scale problem. This thesis

focuses on addressing the particle acceleration mechanisms in kinetic scales and par-

ticle acceleration in global scales as well. In particular, we address the formation

of power-law energy distributions for both electrons and ions in a reconnection site
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with and without a guide-field. We show in Chapter 2 that the plasmoid instability

drives the reconnection current sheet to kinetic scales where MHD descriptions break

down. That’s why we use fully kinetic particle-in-cell simulations in this thesis to

study the particle acceleration processes self-consistently. Besides studying particle

acceleration at reconnection, we also examine particles in a time-dependent chaotic

magnetic field. Observationally, solar flares are usually accompanied by coronal mass

ejections (CMEs), which drive shocks that are efficient in accelerating particle to high

energies through a diffusive shock acceleration (DSA) mechanism. The DSA requires

“seed” particles, which are superathermal particles capable of crossing the shock front

repeatedly and getting efficiently accelerated. This “seed” population is most likely

originated at solar active regions and is accelerated before the eruption of CMEs.

The acceleration mechanism of this “seed” population has not been well addressed.

Inspired by the observations of large scale time-dependent electric current in solar

corona and solar flare regions, we have built a model consisting of time-dependent

electric currents that generate time-dependent electric field, which accelerates the

charged particles.

We start this dissertation by presenting our work on particle acceleration in

a time-dependent chaotic magnetic field. We proceed to discuss particle acceleration

during magnetic reconnection without and with a guide field.

In Chapter 3 and Li et al. (2014), we investigate charged particle behavior in

a chaotic magnetic field, which is generated from one or multiple asymmetric wire-

loop-current-systems (WLCSs). We find that particle transport in one WLCS is a

sub-diffusion process due to the trapping by the magnetic field. In contrast, parti-
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cle transport in 8 WLCSs is a diffusion process as particles are not trapped by one

WLCS but jump between different WLCSs. When including time-dependent electric

currents, both electrons and protons are accelerated to develop power-law energy dis-

tribution with power-law index < 1, which is consistent with the model of particle

acceleration by multiple reconnection current sheet (Dauphin et al., 2007). The spec-

tra get harder with stronger electric current and faster varying electric current. The

maximum energy reaches to 1 − 10 MeV for both electrons and protons, which can

provide a seed population for the CME-driven shock acceleration.

In Chapter 4 and Li et al. (2015), we carried out kinetic simulations in a non-

relativistic plasma with low plasma β. The initial current sheet breaks into a chain

of magnetic islands, which interact and merge with each other. Magnetic energy is

converted into plasma kinetic energy during this process. The results show that accel-

erated nonthermal electrons contain more than half of the total electrons, and their

distribution resembles a power-law energy distribution f(E) ∼ E−1 when particle

loss is absent. By ensemble averaging the electron guiding center drift motions, we

reveal the main acceleration mechanism as a Fermi -type acceleration accomplished

by the particle curvature drift along the electric field induced by the reconnection out-

flows. This is in contrast to the high-β cases, where no obvious power-law spectrum

is obtained (e.g. Drake et al., 2010).

In Chapter 5 and Li et al. (2016), we perform 2D kinetic simulations of recon-

nection without a guide field in a nonrelativistic proton-electron plasma with a range

of plasma βe = βi = 0.007 − 0.2. This work is an extension of the earlier work of Li

et al. (2015). We achieve lower plasma β condition by either increasing the magnetic
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field strength (or equivalently decreasing the particle density), or by decreasing the

plasma temperature. We compare the energy conversion and particle acceleration for

simulations with different plasma βs. We find that both nonthermal electrons and

ions develop power-law energy distributions with power-law index p ∼ 1 in the low-β

regime (βe ≤ 0.02). Through tracking a large number of particles we find that both

electrons and ions get efficiently accelerated when they are drifting along the electric

field induced by the bulk flow in the X -type region, anti-reconnection region where

two islands are merging, and contracting magnetic islands. Furthermore, ions gain

energy when they are “picked-up” by the reconnection outflow. This initial fast en-

ergy gain makes ions more energetic than electrons, so they can be accelerated more

efficiently through the Fermi mechanism later in the simulation. This provides a

good explanation on why ions gain more energy than electron in our simulations. By

studying j ·E, we find the major acceleration mechanism is through particle curvature

drift along the motional electric field. Particle ∇B drift, polarization drift, parallel

electric field and non-gyrotropic pressure tensor all play important roles in different

acceleration regions at different times.

In Chapter 6, we performed a series of kinetic simulations with different guide-

field strength. We find that the energy conversion becomes less efficient as the guide

field increases. This is due to the fact that the plasma becomes less compressible

when there is a guide field. An interesting finding is that reconnection with no guide

field preferentially accelerate ions, but reconnection with a strong guide field prefer-

entially accelerate electrons. Both electrons and ions develop into power-law energy

distributions, which become steeper as the guide field gets stronger. Perpendicular
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acceleration is dominant for electrons in the cases with a weak guide field, and the

parallel acceleration gets more important as the guide field increases. However, the

perpendicular acceleration is always dominant for ions. The drift-current analysis

shows that the dominant acceleration mechanism for ions is the polarization drift

along the motional electric field.
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APPENDIX A

SOLAR CORONA PLASMA PARAMETERS

Some of the plasma parameters in solar corona are listed here. All quantities

are in Gaussian cgs except the quantities with ∼ on head, which are normalized values

using typical solar corona plasma conditions. Ti and Te are normalized to 86.25 eV (1

MK). B is normalized to 10 Gauss. ni and ne are normalized to 109 cm−3. Ion mass

is normalized to the proton mass µ = mi/mp. Z is the charge state. k is Boltzmann

constant. Others are specified in calculation.

• Frequencies

– Electron gyrofrequency ωce = eB/mec = 1.76× 108B̃ rad/sec

– Ion gyrofrequency ωci = ZeB/mic = 9.58× 104B̃Zµ−1 rad/sec

– Electron plasma frequency ωpe =
�
4πnee2/me = 1.78× 109ñ

1/2
e rad/sec

– Ion plasma frequency ωpi =
�

4πniZ2e2/mi = 4.17×107ñ
1/2
i µ−1/2Z rad/sec

• Length scales

– Electron gyroradius re = VTe/ωce = 2.21T̃
1/2
e B̃−1 cm

– Ion gyroradius ri = VT i/ωci = 94.68T̃
1/2
i B̃−1µ1/2Z−1 cm
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– Electron inertial length de = c/ωpe = 16.8ñ
−1/2
e cm

– Ion inertial length di = c/ωpi = 7.21× 102ñ
−1/2
i µ1/2Z−1 cm

– Debye length λD = (kT/4πne2)1/2 = 0.22T̃ 1/2ñ−1/2 cm

• Velocities

– Electron thermal speed VTe = (kTe/me)
1/2 = 3.88× 103T̃

1/2
e km/sec

– Ion thermal speed VT i = (kTi/mi)
1/2 = 90.57T̃

1/2
i km/sec

– Alfvén speed VA = B/
√
4πnimi = 6.89× 102ñ

−1/2
i B̃ km/sec

– Ion sound speed Cs = (γZkTe/mi)
1/2 = 90.92(γZT̃e/µ)

1/2 km/sec, where

γ is the adiabatic index.

• Associated with collisions

– Electron collision frequency νe = 3.63ñe lnΛT̃
−3/2
e sec−1, where Λ = neλ

3
D =

1.04× 107T̃ 3/2ñ
−1/2
e ; lnΛ = 16.16 + ln(T̃ 3/2ñ

−1/2
e ).

– Electron mean free path λmfp = VTe/νe = 1.07 × 108ñ−1
e T̃ 2

e (lnΛ)
−1 cm,

which is much larger than all of the kinetic scales.

– Classical conductivity: σ = nee
2/meνc = 6.97 × 1016(lnΛ)−1T̃

3/2
e sec−1,

where νc = νe.

– Magnetic diffusivity η = c2/4πσ = 1.03× 103 lnΛT̃
−3/2
e .

– Lundquist number: S = LVA/η = 6.69× 1013(lnΛ)−1L̃T̃
3/2
e ñ

−1/2
i B̃, where

L is normalized to L0 = 109 cm (10 Mm).
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– The resistive scale δ = LS−1/2 = 122.2(lnΛ)1/2L̃1/2T̃
−3/4
e ñ

1/4
i B̃−1/2 cm,

where L is normalized to L0 = 109 cm (10 Mm).
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APPENDIX B

ELECTROMAGNETIC FIELD IN A

WIRE-LOOP-CURRENT-SYSTEM

B.1 Electromagnetic field of a straight wire current

The magnetic vector potentialA(x, t) for a time-varying current density J(x, t)

can be shown to satisfy the following equation,

∇2A− 1

c2
∂2A

∂t2
= −4π

c
J (B.1)

It can be solved in terms of the Green’s function G(x, t;x�, t�) (Jackson, 1998). The

solution is

A(x, t) =
1

c

�
[J(x�, t�)]ret

R
d3x (B.2)

where the suffix ret indicates the retarded time t� = t−R/c; R = |x−x�|. We assume

that the current of the wire has a simple sinusoidal time variation at all points, i.e.,

J(x�, t�) = ẑI cos(ωt�), then

[J(x�, t�)]ret = ẑI cos[ω(t−R/c)] (B.3)
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The resulting vector potential is

A(x, t) = lim
L→∞

ẑ
I

c

� L

−L

cos[ω(t−R/c)]

R
dz�

=ẑ
2I

c

�
cos(ωt) lim

L→∞

� ρ1

ρ

cos[ωR/c]�
R2 − ρ2

dR + sin(ωt) lim
L→∞

� ρ1

ρ

sin[ωR/c]�
R2 − ρ2

dR

�

=ẑ
2I

c

�
−π

2
Y0(ωρ/c) cos(ωt) +

π

2
J0(ωρ/c) sin(ωt)

�
(B.4)

where R =
�

ρ2 + z�2, ρ1 =
�
ρ2 + L2, and we have used the integral representations

of Bessel functions of first and second kind (Abramowitz and Stegun, 1964). The

resulting electric field E is

E = −∇φ− 1

c

∂A

∂t
= −1

c

∂A

∂t
= −ẑ

πIω

c2
[Y0(ωρ/c) sin(ωt) + J0(ωρ/c) cos(ωt)] (B.5)

where we have let φ = 0 by a suitable choice of gauge (in absence of any electric

charge). For ω → 0, E → 0. The time dependent magnetic field B(ρ, t) can be

evaluated from B(ρ, t) = ∇ × A(ρ, t). In cylindrical coordinates, the only non-

vanishing component of B(ρ, t) is Bφ(ρ, t), which is given by

Bφ(ρ, t) = −∂Az(ρ, t)

∂ρ

=
πI

c

�
∂Y0(ωρ/c)

∂ρ
cosωt− ∂J0(ωρ/c)

∂ρ
sinωt

�

=
πIω

c2
[−Y1(ωρ/c) cosωt+ J1(ωρ/c) sinωt] (B.6)
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The magnetic field of a straight wire B = 2I/cρ in cgs

B

Gauss
=

1

5

I/Ampere

ρ/cm
(B.7)

Defining a dimensionless variable x = ωρ/c, we obtain

E(ρ, t)

Gauss
= −ẑ

1

5

I/Amp

ρ/cm

πx

2
[Y0(x) sin(ωt) + J0(x) cos(ωt)] (B.8)

B(ρ, t)

Gauss
= φ̂

1

5

I/Amp

ρ/cm

πx

2
[−Y1(x) cosωt+ J1(x) sinωt] (B.9)

B.2 Magnetic field of a loop current

For a current loop with its center located at the origin of the Cartesian coor-

dinate system as shown below. The current density J has only a component in the

φ direction.

y

z

x

P

θ
a

J

r

Figure B.1 Illustration of a loop current with a radius a located in the x− y plane.
J is the current density.
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Jφ = I sin θ�δ(cos θ�)
δ(r� − a)

a
(B.10)

The only non-zero component of the vector potential A is (Jackson, 1998)

Aφ(r, θ) =
µ0

4π

4Ia√
a2 + r2 + 2ar sin θ

�
(2− k2)K(k)− 2E(k)

k2

�
(B.11)

where K(k) and E(k) are the complete elliptical integral of the first kind and the

second kind.

k2 =
4ar sin θ

a2 + r2 + 2ar sin θ
(B.12)

K(k) =

� π/2

0

dθ��
1− k2 sin2 θ�

(B.13)

E(k) =

� π/2

0

�
1− k2 sin2 θ�dθ� (B.14)

The magnetic field is

Br =
1

r sin θ

∂

∂θ
(sin θAφ) (B.15)

Bθ = −1

r

∂

∂r
(rAφ) (B.16)

Bφ = 0 (B.17)

Then, the ρ component of the magnetic field in the cylindrical coordinate is

Bρ = Br sin θ + Bθ cos θ =
sin θ

r

∂Aφ

∂θ
− cos θ

∂Aφ

∂r
(B.18)
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Using temporary variables C(k) = ((2−k2)K(k)−2E(k))/k2 and ρ� =
√
a2 + r2 + 2ar sin θ,

∂Aφ

∂θ
=

µ0

4π

−4Ia2r cos θ

ρ�3
C(k) +

µ0

4π

4Ia

ρ�
∂C(k)

∂k

∂k

∂θ
(B.19)

∂Aφ

∂r
=

µ0

4π

−4Ia(r + a sin θ)

ρ�3
C(k) +

µ0

4π

4Ia

ρ�
∂C(k)

∂k

∂k

∂r
(B.20)

∂k

∂θ
=

1

2k

�
4ar cos θ

ρ�2
− 8a2r2 sin θ cos θ

ρ�4

�
(B.21)

∂k

∂r
=

1

2k

�
4a sin θ

ρ�2
− 4ar sin θ(2r + 2a sin θ)

ρ�4

�
(B.22)

∂C(k)

∂k
=

4− 3k2

k3(1− k2)
E(k) +

k2 − 4

k3
K(k) (B.23)

where we have used (Abramowitz and Stegun, 1964)

∂K(k)

∂k
=

E(k)

k(1− k2)
− K(k)

k
(B.24)

∂E(k)

∂k
=

E(k)−K(k)

k
(B.25)

Then,

Bρ =
µ0

2π

4Iar cos θ

(a2 + r2 + 2ar sin θ)2/3

�
C(k) +

∂C(k)

∂k

�

=
µ0I

2π

cos θ

sin θ

1√
a2 + r2 + 2ar sin θ

�
−K(k) +

a2 + r2

r2 + a2 − 2ar sin θ
E(k)

�

We can use Bρ to calculate Bx = Bρ cosφ and By = Bρ sinφ. The z-component is

Bz = Br cos θ − Bθ sin θ (B.26)

=
µ0I

2π

1√
a2 + r2 + 2ar sin θ

�
K(k)− r2 − a2

r2 + a2 − 2ar sin θ
E(k)

�
(B.27)
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We use Taylor expansion of K(k) and K(k) for fast calculation (Fukushima, 2009).

K(m) ≈
JK�

j=0

Kj(m−m0)
j, E(m) ≈

JE�

j=0

Ej(m−m0)
j (B.28)

where the changing variable is changed to m = k2. To guarantee accurate calculation,

JK and JE, m0, Kj and Ej change with m. The values are given in Fukushima (2009).
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APPENDIX C

GENERATION OF PRESSURE ANISOTROPY

In Chapter 4.1 of Zank (2014), we get the focussed transport equation.

∂f

∂t
+ (Ui + cµbi)

∂f

∂xi

+
1− µ2

2

�
c∇ · b+ µ∇ ·U − 3µbibj

∂Ui

∂xj

− 2bi
c

�
∂Ui

∂t
+ Uj

∂Ui

∂xj

��
∂f

∂µ

−
�
µbi
c

�
∂Ui

∂t
+ Uj

∂Ui

∂xj

�
+

1− µ2

2
∇ ·U − 1− 3µ2

2
bibj

∂Ui

∂xj

�
c
∂f

∂c
=

�
δf

δt

����s
�

(C.1)

where b ≡ B/B is the unit vector along the large scale magnetic field; c is particle

speed in the flow frame; U is the flow velocity; µ is the cosine of particle pitch angle;

the right term is the scattering term by small scale magnetic field, which tends to

isotropize the particles. The above equation is gyro-averaged over φ. The operator

looks like �Q� = 1/2π
� 2π

0
Qdφ. The gradient of flow velocity can be written in to

three terms.

∂Ui

∂xj

=
1

3
∇ ·Uδij +

1

2

�
∂Ui

∂xj

+
∂Uj

∂xi

− 2

3
∇ ·Uδij

�
+

1

2

�
∂Ui

∂Uj

− ∂Uj

∂Ui

�
(C.2)

=
1

3
∇ ·Uδij + σij + ωij (C.3)
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where σij is shear tensor; ωij is rotation tensor. Using the method of characteristics,

1

c

�
∂c

∂t

�
= −1

3

∂Ui

∂xi

+
1− 3µ2

2
bibjσij −

µbi
c

dUi

dt
(C.4)

�
∂µ

∂t

�
=

1− µ2

2

�
c
∂bi
∂xi

− 3µbibjσij −
2bi
c

dUi

dt

�
(C.5)

Since it is in the flow frame, the inductive electric field −U ×B is cancelled out. But

the parallel electric field may still play a roll. The modified equations are

1

c

�
∂c

∂t

�
= −1

3

∂Ui

∂xi

+
1− 3µ2

2
bibjσij −

µbi
c

dUi

dt
+

q

m

E�
c
µ (C.6)

�
∂µ

∂t

�
=

1− µ2

2

�
c
∂bi
∂xi

− 3µbibjσij −
2bi
c

dUi

dt

�
+

q

m

E�
c
(1− µ2) (C.7)

The focussed transport equation can be written as

∂f

∂t
+ (Ui + cµbi)

∂f

∂xi

+
∂µ

∂t

∂f

∂µ
+

∂c

∂t

∂f

∂c
=

δf

δt

����
s

(C.8)

where <> is neglected for simplicity. We multiply c2µ2 to the equation and integrate

over the distribution function. We get

∂P�
∂t

+U ·∇P� + b ·∇q� +

�
c2µ2∂µ

∂t

∂f

∂µ
(−c2dcdµ)+

�
c2µ2∂c

∂t

∂f

∂c
(−c2dcdµ) =

�
c2µ2 δf

δt

����
s

(−c2dcdµ) (C.9)

where q� is one component of the pressure-transport tensor, and q� =
�
c3�f(−c2dcdµ);

P� is the parallel pressure. We assume the scattering term is represented in pitch-
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angle.

�
δf

δt

����s
�

=
∂

∂µ

�
ν(1− µ2)

∂f

∂µ

�
(C.10)

The fourth and fifth term on the left and right term can integrated by parts.

�
c2µ2∂µ

∂t

∂f

∂µ
(−c2dcdµ) (C.11)

=−
�

∂

∂µ

�
c2µ2∂µ

∂t

�
f(−c2dcdµ) (C.12)

=−
�

∂

∂µ

�
µ2 − µ4

2
c2
�
c
∂bi
∂xi

− 3µbibjσij −
2bi
c

dUi

dt
+ 2

q

m

E�
c

��
f(−c2dcdµ) (C.13)

=−
�

(µ− 2µ3)c2
�
c
∂bi
∂xi

− 2bi
c

dUi

dt
+ 2

q

m

E�
c

�
f(−c2dcdµ)

+

�
3

2
(3µ2 − 5µ4)c2bibjσijf(−c2dcdµ) (C.14)

And

�
c2µ2∂c

∂t

∂f

∂c
(−c2dcdµ) (C.15)

=−
�

∂

∂c

�
c2µ2∂c

∂t

�
f(−c2dcdµ) (C.16)

=−
�

∂

∂c

�
c5µ2

�
−1

3

∂Ui

∂xi

+
1− 3µ2

2
bibjσij −

µbi
c

dUi

dt
+

q

m

E�
c
µ

��
f(−dcdµ) (C.17)

=−
�

5c2µ2

�
−1

3

∂Ui

∂xi

+
1− 3µ2

2
bibjσij

�
(−c2dcdµ)

−
�

4cµ2

�
−µbi

dUi

dt
+

qE�
m

µ

�
(−c2dcdµ) (C.18)
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Equation Equation C.14 and Equation C.18 are combined to get

5

3
P�

∂Ui

∂xi

+ 2P�bibjσij +

�
2µc

�
bi
dUi

dt
− qE�

m

�
f(−c2dcdµ)−

�
(µ− 2µ3)c3

∂bi
∂xi

f(−c2dcdµ)

(C.19)

where the last term is going to be −2q⊥∇·b+q�∇·b, where q⊥ = 1
2

�
c2⊥c�f(−c2dcdµ);

q� is as mentioned before. The scattering term is going to be

�
c2µ2 ∂

∂µ

�
ν(1− µ2)

∂f

∂µ

�
(−c2dcdµ) = −

�
2c2µν(1− µ2)

∂f

∂µ
(−c2dcdµ)

=

�
2c2ν(1− 3µ2)f(−c2dcdµ)

= 4ν(P⊥ − P�) (C.20)

Then we have

dP�
dt

=− 5

3
P�

∂Ui

∂xi

− 2P�bibjσij −
�

2µc

�
bi
dUi

dt
− qE�

m

�
f(−c2dcdµ)

+ 2q⊥∇ · b−∇ · (q�b) + 4ν(P⊥ − P�) (C.21)

which is the same with the results in the original paper of the CGL closure (Chew

et al., 1956). Similarly, for perpendicular pressure, we get

dP⊥
dt

= −5

3
P⊥

∂Ui

∂xi

+ P⊥bibjσij − q⊥∇ · b−∇ · (q⊥b)− 2ν(P⊥ − P�) (C.22)
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which is exactly the same with the results in the original paper of the CGL clo-

sure (Chew et al., 1956) except for the pitch angle scattering term. We need to find

out the reason. When the particle distribution is not symmetric with respect to µ,

q�, q⊥, the terms related the flow acceleration/deceleration and parallel electric field

will play a role in the evolution pressure anisotropy.

d(P�/P⊥)

dt
=− 3

P�
P⊥

bibjσij +
1

P⊥

�
−
�

2µc

�
bi
dUi

dt
− qE�

m

�
f(−c2dcdµ)

+ 2q⊥∇ · b−∇ · (q�b) + 4ν(P⊥ − P�)

�

+
P�
P 2
⊥

�
q⊥∇ · b+∇ · (q⊥b) + 2ν(P⊥ − P�)

�
(C.23)

The pressure anisotropy due to parallel electric field has been considered in a series

of papers (see Egedal et al. (2013) for a recent review). The pressure anisotropy and

the resulting firehose and mirror instabilities have been studied by Kunz et al. (2014)

(see its citations for more reference).
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APPENDIX D

COMPRESSIONAL EFFECT IN RECONNECTION

We derived the expression of j⊥ in the previous chapter (Equation 4.8). Here,

we will show that the energy conversion is associated with fluid compression and shear.

Neglecting the E × B drift term (no energy conversion) and the fluid acceleration

term (small compared with the other terms),

j⊥ = −∇P⊥ ×B

B2
+ (P� − P⊥)

B × (B ·∇)B

B4
(D.1)

Assuming E ≈ −v ×B = −v⊥ ×B for anti-parallel reconnection,

j⊥ ·E =
∇P⊥ ×B

B2
· (v⊥ ×B)− (P� − P⊥)

B × (B ·∇)B

B4
· (v⊥ ×B) (D.2)

= ∇P⊥ · v⊥ + (P� − P⊥)
(B ·∇)B

B2
· v⊥ (D.3)

= ∇P⊥ · v⊥ + (P� − P⊥)
B∇B −B × (∇×B)

B2
· v⊥ (D.4)
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where

B × (∇×B) · v⊥ = [(∇×B)× v⊥] ·B

= −∇(✘✘✘✘v⊥ ·B ) ·B + Bv⊥ ·∇B +B · [(B ·∇)v⊥] (D.5)

Then,

j⊥ ·E = ∇P⊥ · v⊥ + (P� − P⊥)b · [(b ·∇)v⊥] (D.6)

= ∇ · (P⊥v⊥)− P⊥∇ · v⊥ − (P� − P⊥)bibj
∂vi⊥
∂xj

(D.7)

= ∇ · (P⊥v⊥)− p∇ · v⊥ − (P� − P⊥)bibjσij (D.8)

where p = (P�+2P⊥)/3 is effective scaler pressure, where σij =
1
2

�
∂u⊥j

∂xi
+ ∂u⊥i

∂xj
− 2

3
∇ · u⊥δij

�

is the shear tensor of the perpendicular bulk flow u⊥.
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APPENDIX E

PARTICLE-IN-CELL METHOD

In plasma physics, particle-in-cell (PIC) method refers to a computational

method to solve the Maxwell-Boltzmann system of equations (Birdsall and Langdon,

1991; Hockney and Eastwood, 1988; Bowers et al., 2008).

∂tfs + v ·∇fs +
qs
ms

�
E +

1

c
v ×B

�
·∇vfs =

�

s�

C{fs, fs�} (E.1)

ρ =
�

s

qs

�
d3vfs(r,v, t), j =

�

s

qs

�
d3vvfs(r,v, t) (E.2)

∇×E = −1

c

∂B

∂t
, ∇ ·E = 4πρ (E.3)

∇×B =
4π

c
j +

1

c

∂E

∂t
, ∇ ·B = 0 (E.4)

where fs(r,v, t) is the phase-space distribution of a particle species s with charge

qs and mass ms. c is the speed of light in vacuum. v is the particle momentum

normalized by c. E andB are the electric and magnetic field. ρ is the particle number

density. j is the current density.
�

s� C{fs, fs�} represents Coulomb collisions and is

zero for space and astrophysical collisionless plasma. The direct discretization of the

6-dimensional fs is usually prohibitive, so PIC simulations sample it with a collections

of computational particles—each computational particle typically represents many
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physical particles (or chunks of phase space). The left panel of Figure E.1 shows one

computing cell with charged particles overplotted. Particles with different positions

and velocities sample fs(r,v, t). The electric and magnetic field is defined on the

grid. Maxwell’s equations are solved using the charge and current deposited on the

grids from the particles. To move a particle, the E/M fields is interpolated from the

grid to the particle position. The right panel of Figure E.1 shows one computing time

step of PIC simulation.

∼ λD

initialize
particles & fields

weighting
(E,B) → force

move particles

deposit ρ, j
on the grid

field solver
ρ, j → E,B

diagnostics Δt

Figure E.1 Left: one cell in PIC simulation. λD is the Debye length. Electric and
magnetic fields are sampled on the grids (black lines). The red and blue dots are
computational particles. Right: one computing time step of PIC simulation.

The Gauss’s law for E and B are satisfied as initial conditions, so they are

not solved. Divergence clean procedures are applied to E and B to make sure they

satisfy the Gauss’s law. The steps to build a 2D PIC code are listed below.
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E.1 Units and normalization

The Faraday’s equation, Ampère’s law, Lorentz’s equation and Newton’s law

in Gaussian units,

∂B

∂t
= −c∇×E,

∂E

∂t
= c∇×B − 4πJ (E.5)

dus

dt
=

qs
msc

(E + γ−1us ×B),
drs
dt

= cγ−1us (E.6)

where us = γvs/c; γ =
�
1 + u2

s = 1/
�

1− v2s .

ms = m∗
sm0, ns = n∗

sn0, qs = q∗sq0 (E.7)

vs = v∗
sv0, t = t∗t0, l = l∗l0 (E.8)

∇ = ∇∗/l0, E = E∗E0, B = B∗B0 (E.9)

where quantities with ∗ are the normalized ones; m0, n0, · · · are normalization of

corresponding physical quantities. Then we have

∂B

∂t
= −cE0t0

l0B0

∇×E,
∂E

∂t
=

cB0t0
l0E0

∇×B − 4πn0q0v0t0
E0

J (E.10)

dus

dt
=

qs
msc

�
q0E0t0
m0

E + γ−1 q0B0t0
m0

us ×B

�
,

drs
dt

=
ct0
l0

γ−1us (E.11)
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where ∗ has been neglected for simplification. We choose

l0 = di =
c

ωpi

=
c
√
mi�

4πniq2i
(E.12)

t0 =
1

Ωci

=
mic

qiB0

(E.13)

where ωpi is ion plasma frequency; Ωci is ion gyrofrequency. v0 = l0/t0 = vA. For

electron-proton plasma, we choose qi = q0, ni = n0, me = m0. If we choose E0c =

vAB0,

∂B

∂t
= −∇×E,

∂E

∂t
=

c2

v2A
(∇×B − J) (E.14)

dus

dt
=

qs
ms

mi

m0

�vA
c
E + γ−1us ×B

�
,

drs
dt

=
c

vA
γ−1us (E.15)

E.2 Time and space discretization (grids)

Two and half dimensional simulation usually means 2D3V. The particle in-

formation for particle include x, y, ux, uy, uz, q. The positions are given by the

containing cell index and the offset from the cell center, normalized to the cell di-

mensions. This can guarantee identical numerical properties for each cell (Bowers

et al., 2008). A particle structure is defined to contain dx, dy, grid, test, ux,

uy, uz, q. dx and dy are normalized shifts from the cell center; grid is the con-

taining cell index; test is a flag for particle information diagnostics; ux, uy and uz

are three components of particle velocity; q is the carrying charge for this particle.

q=1 for ions; q=-1 for electrons. We choose a 2D Yee lattice shown in Figure E.2
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j + 1
2

j + 1

i i+ 1
2

i+ 1

ρ

Ez, Jz

Bz

By

Ey, Jy

Bx

Ex, Jx
j

j + 1
2

j + 1

i i+ 1
2

i+ 1

ρ

∂Bz

∂x
∂Ez

∂x

∂Bz

∂y
∂Ez

∂y

∂By

∂x
∂Ey

∂x
∂Bx

∂y∂Ex

∂y

Figure E.2 2D Yee lattice for PIC simulation.

for the field solver. E and B are staggered. The following quantities are put into a

single structure in the code: Ex(i +
1
2
, j), Ey(i, j +

1
2
), Ez(i +

1
2
, j + 1

2
), Bx(i +

1
2
, j),

By(i, j+
1
2
), Bz(i+

1
2
, j+ 1

2
), ∂Ex

∂y
(i+ 1

2
, j+ 1

2
), ∂Ey

∂x
(i+ 1

2
, j+ 1

2
), ∂Ez

∂x
(i, j+ 1

2
), ∂Ez

∂y
(i+ 1

2
, j),

∂Bx

∂y
(i + 1

2
, j + 1

2
), ∂By

∂x
(i + 1

2
, j + 1

2
), ∂Bz

∂x
(i, j + 1

2
), ∂Bz

∂y
(i + 1

2
, j). This makes it easy

to move the whole structure when exchanging ghost cells. In actual code, i+ 1
2
→ i,

i− 1
2
→ i− 1, j + 1

2
→ j, j − 1

2
→ j − 1.

E.3 Field solver

We need to solve Faraday’s equation and Ampère’s law. In the following

discussion, we neglect the constant term c2/v2A first. In 2D, the field components can

be decomposed into 2 independent modes.

• TE mode (k ·E = 0): Ez, Bx, By

• TM mode (k ·B = 0): Bz, Ex, Ey
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Then we have

∂tBx = −∂yEz, ∂tBy = ∂xEz, ∂tEz = ∂xBy − ∂yBx − Jz (E.16)

∂tEx = ∂yBz − Jx, ∂tEy = −∂xBz − Jy, ∂tBz = −∂xEy + ∂yEx (E.17)

The field solve uses leapfrog integration method shown in Figure E.3. E is sampled

E

B, j

n − 1 n n + 1

n − 3
2 n − 1

2 n + 1
2 n + 3

2

Figure E.3 Leapfrog integration for the E/M field.

on the integer time points. B and j are sampled on the half time points.

B
n+ 1

2
x (i, j)− B

n− 1
2

x (i, j)

Δt
= −∂yE

n
z (i, j) (E.18)

B
n+ 1

2
y (i, j)− B

n− 1
2

y (i, j)

Δt
= ∂xE

n
z (i, j) (E.19)

En+1
z (i, j)− En

z (i, j)

Δt
= ∂xB

n+ 1
2

y (i, j)− ∂yB
n+ 1

2
x (i, j)− J

n+ 1
2

z (i, j) (E.20)

B
n+ 1

2
z (i, j)− B

n− 1
2

z (i, j)

Δt
= −∂xE

n
y (i, j) + ∂yE

n
x (i, j) (E.21)

En+1
x (i, j)− En

x (i, j)

Δt
= ∂yB

n+ 1
2

z (i, j)− J
n+ 1

2
x (i, j) (E.22)

En+1
y (i, j)− En

y (i, j)

Δt
= −∂xB

n+ 1
2

z (i, j)− J
n+ 1

2
y (i, j) (E.23)

So we need to update fields components Bx, By, Bz, Ex, Ey, Ez first using the curl

of fields. Then we need to update the curl of fields using updated fields.
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A variety of boundary conditions can be used in PIC codes include Periodic

Boundary Condition (PBC), Perfect Electric Conductor (PEC), Perfect Magnetic

Conductor (PMC), field emitting, field absorbing (Higdon, 1986) and open boundary

condition (Birdsall and Langdon, 1991; Daughton et al., 2006). A PEC is character-

ized by vanishing tangential electric field at the conducting surface, and zero total

electric field inside. While a PMC is characterized by a vanishing tangential magnetic

field at the surface.

(PEC) n̂× Ē = 0, n̂× H̄ = J̄s (E.24)

(PMC) n̂× Ē = −M̄s, n̂× H̄ = 0 (E.25)

where J̄s is electric current density; M̄s is magnetic current density. The simplest

open boundary condition is to have a resistive layer surrounding the simulation do-

main. Alternatively, one can impose outgoing wave boundary conditions (Birdsall

and Langdon, 1991). A more complicated and physical open boundary condition is

to open the boundary for both particles and fields (Daughton et al., 2006). Particle

reaching the boundary are removed, and new particles satisfying specific distribution

are injected at the same time.

The time step is determined by the Courant condition. Assuming the fields of

the form (E,B) ∼ exp(ik · x− iωt), then the Maxwell’s equations are

ΩB = cκ×E, ΩE = −cκ×B (E.26)
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where Ω = sin(ωΔt/2)/(Δt/2), κx = sin(kxΔx/2)/(Δx/2). When Δt → 0 and

Δx → 0, Ω and κ reduces to ω and k. Eliminating E and B yields Ω2 = c2κ2, which

is expanded as

�
sin(ωΔt/2)

cΔt

�2

=

�
sin(kxΔx/2)

Δx

�2

+

�
sin(kyΔy/2)

Δy

�2

(E.27)

ω is real (no damping or growth) if

1 > (cΔt)2
�

1

Δx2
+

1

Δy2

�
(E.28)

which is the Courant condition. Considering a 1D case, Equation E.27 changes to

cos(ωΔt) =

�
cΔt

Δx

�2

(cos(kΔx)− 1) + 1 (E.29)

cos

�
ωΔx

c

cΔt

Δx

�
− 1 =

�
cΔt

Δx

�2

(cos(kΔx)− 1) (E.30)

cos(Cy�)− 1 = C2(cos(x�)− 1) (E.31)

where y� = ωΔx/c, x� = kΔx, Courant number C = cΔt/Δx. Figure E.4 shows

the dispersion relation for different Courant number. For wavelengths comparable to

the cell dimensions (kΔx ∼ π), the discretized speed of light can deviate significantly

from c. Then, relativistic particles might have speed larger than c, which can generate

nonphysical Cerenkov radiation at these wavelength (Bowers et al., 2008). To reduce

this numerical Cerenkov radiation, we need a transverse current (Bowers et al., 2008).

Effectively, a current that obeys JT = τ∂t(JT − ∇ × µ−1B) is included that damps
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Figure E.4 Vacuum dispersion solution of Maxwell’s equations for finite Δx, Δt. In
one dimension, no dispersion error occurs for C = 1.0, which is marginally stable.

the short wavelength radiation on a time scale τ while leaving the discredited charge

conservation properties unchanged (Bowers et al., 2008). This method needs an

implicit field solver. An alternative explicit method uses JT = τ∂t(−∇ × µ−1B) =

τµ−1∇×∇×E, which can be written in normalized form as JT = τ∇×∇×E. The

Ampère’s law is modified to

∂E

∂t
=

c2

v2A
(∇×B − J − τ∇×∇×E) (E.32)

Eastwood (1991) suggested that τ = 0.01 would be enough, but the time step that

he used is unknown. Zagorodnov and Weiland (2005); Bowers (2001) suggested that

τ = 1/8 or 1/4 of the time step.
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E.4 Divergence clean for electric field

We follow the method Marder passes (Marder, 1987). The Gauss’s law for

electric field is normalized as

∇ ·E =
4πen0di

E0

ρ =

�
c

vA

�2

ρ (E.33)

The charge density can be defined as

ρ(xp) =
1

n0

1

ΔxΔy

Np�

i=1

qiW (xi − xp) (E.34)

where W (xi − xp) is the assignment function. Define

F = ∇ ·E − ρ (E.35)

Then, Gauss’s law becomes F = 0. Ampère’s law is changed as

∂tE = ∇×B − J + d∇F (E.36)

d∇F will be referred as a “pseudo-current”. d is numerical parameter chosen small

enough not to affect adversely the stability but large enough to perform the desired

function. Take the divergence of Equation E.36, F satisfies the inhomogeneous diffu-

sion equation

∂F

∂t
− d∇2F = −

�
∂ρ

∂t
+∇ · J

�
(E.37)
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The stability restriction introduced by this addition is the well-known heat equation

constraint

2dΔt/Δx2 < 1 (E.38)

where δx and δt are the numerical space and time steps. Adding too much diffusion,

however, can suppress the very physics the code is attempting to model. Adding to

little, or none at all, allows the density obtained from the particles to differ from that

obtained from the divergence of E to what may be an unacceptable degree. The

discretized form of the modified Ampère’s law can expressed as

En+1 −En = Δt
�
∇ ·Bn+ 1

2 − Jn+ 1
2 + d∇F n

�
(E.39)

It is shown in the original paper of Marder (1987) that d = 0.001 is good enough.

E.5 Particle advance

The Lorentz equation and Newton’s equation are solved using a Buneman-

Boris method (Birdsall and Langdon, 1991). In relativistic form,

un+1/2 − un−1/2

Δt
=

q

m

�
En +

1

c

un+1/2 + un−1/2

2γn
×Bn

�
(E.40)

un−1/2 = u− − qEnΔt

2m
, un+1/2 = u+ +

qEnΔt

2m
(E.41)

u+ − u−

Δt
=

q

2γnmc
(u+ + u−)×Bn (E.42)
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where u = γv. Equation E.42 results a rotation of u about an axis parallel to B

through and angle θ = −2 arctan(qBnΔt/2γmc). If we define T = qBnΔt/2γnmc,

with (γn)2 = 1+(u−/c)2. This method is implicit at first look, but it actually can be

separated into several explicit steps.

u− = un−1/2 +
qEnΔt

2m
(E.43)

u� = u− + u− × T , u+ = u− + u� × S (E.44)

un+1/2 = u+ +
qEnΔt

2m
, rn+1 = rn +

un+1/2Δt

γn+1/2
(E.45)

where S = 2T /(1 + T 2), (γn+1/2)2 = 1 + (un+1/2/c)2. Figure E.5 illustrates this

process.

u−

u+

u�

u� × S

u− × T

Figure E.5 Illustration of Borris rotation.
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Change the equations to normalized form that can be used in the simulation.

u → u/c

T =
qsB

nΔt

2γn
sms

mi

m0

, u− = un−1/2 +
qsE

nΔt

2ms

mi

m0

vA
c

(E.46)

u� = u− + u− × T , u+ = u− + u� × S (E.47)

un+1/2 = u+ +
qsE

nΔt

2ms

mi

m0

vA
c
, rn+1 = rn +

c

vA

un+1/2Δt

γn+1/2
(E.48)

Particle boundary conditions include periodic boundary condition, particle

absorbing, particle reflecting and particle refluxing (Daughton et al., 2006). Particle

collisions can be included in PIC code to collisional plasma (Takizuka and Abe, 1977;

Daughton et al., 2009a; Lemons et al., 2009).

E.6 Particle sorting

Particles are initially assigned to each computing cell and continuously aligned

in the memory. After several time steps, particles move into different cells, and the

memory accessing is not continuous anymore. This will slow down the simulation.

We have to sort the particles by cell every few steps to restore the spatial locality of

the particles. A counting sort is an algorithm for sorting a length N list of values

where only M different values are possible (Bowers, 2001). N corresponds the number

of particles; M corresponds to the number of cells. In this algorithm, the particles

are sorted by mesh location simultaneously with the push and accumulate. The

implementation requires a minimal number of extra computations as the push and

accumulate already generate most of the information necessary to do a counting sort.
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A pseudo code for and out-of-place counting sort is copied here from (Bowers, 2001).

j = Pi is changed to be j = Pi + 1 at the 3rd step.

Algorithm 1: Particle Counting Sort

Input : I is the particle array to sort containing N particles; M is the
number of mesh cells

Output: O is the sorted particle array, P is a particle allocation such
that OPi−1+1 to Op are all the particles in cell i

begin
allocate N particles for O
allocate and set to zero M integers for P

Step 1: Count the number of particles in each cell
for n := 1 to N do

i := compute the cell for particle In
Pi := Pi + 1

end for

Step 2: Convert P to an allocation
k := 0
for i := 1 to M do

j := Pi

Pi := k
k := k + j

end for

Step 3: Sort I into O
for n := 1 to N do

i := compute the cell for particle In
j := Pi + 1
Pi := j
Oj := In

end for

return O, P
end

E.7 Charge conservation current deposition

The perfect particle shape is a Gaussian distribution. Depositing current using

this particle shape is expensive because it covers infinite number of cells. In practice,
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particles have finite sizes so they only affect a finite number of cells. Figure E.6 shows

three shapes of particle clouds. The lowest order is Nearest Grid Point (NGP) particle

shape. The most commonly used shape is the linear Cloud in Cell (CIC) shape. The

quadratic shape is called Triangular Shaped Cloud (TSC).

−H/2 H/2
0.0

0.2

0.4

0.6

0.8

1.0

W
(x
)

NGP

−H H

CIC

−3H/2−H/2 H/2 3H/2

TSC

Figure E.6 Common particle shapes. H is the cell width. W (x) is the assignment
function. For NGP, W (x) = 1, when |x| < H/2 or x = H/2. For CIC, W (x) =
1 − |x|/H, when |x| ≤ H. For TSC, W (x) = 3/4 − (x/H)2, when |x| ≤ H

2
; W (x) =

(3/2− |x|/H)2 /2, when H/2 ≤ |x| ≤ 3H/2.

The current deposition has to guarantee the charge is conserved as the Gauss’s

law is not solved. Three most commonly used charge conservation scheme (CCS) are

from (Villasenor and Buneman, 1992; Esirkepov, 2001; Umeda et al., 2003). Villasenor

and Buneman (1992)’s CCS assumes the particle trajectory over one time step is a

straight line. When particles cross the cell boundary, the scheme has to decide the

cross points. This may slow down the computation (Umeda et al., 2003). Esirke-

pov (2001); Umeda et al. (2003) avoid this problem and improves current deposition

performance by separating the particle trajectory over one time step into different seg-

ments. Esirkepov (2001)’s CCS can be applied to high-order particle shape. Umeda

et al. (2003)’s Zigzag scheme is only available in CIC particle shape. Please refer the

original paper of Esirkepov (2001); Umeda et al. (2003) for detailed implementation

of the schemes.
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One effect of the finite-size particles on a grid is the aliasing effect. Without

grid, and in one dimension,

ρc(x) = qnc(x) = q

� L

0

dx�W (x− x�)n(x�) (E.49)

where L is the length of the periodic system. Doing Fourier transform,

ρc(k) =

� L

0

ρc(x)e
−ikxdx

= q

� L

0

n(x�)dx�
� L

0

W (x− x�)e−ikxdx

= q

� L

0

n(x�)e−ikx�
dx�

� L

0

W (x)e−ikxdx

= qW (k)n(k) (E.50)

With a grid, ρc will be sampled on the grid points.

ρj = ρc(Xj) =

� ∞

−∞

dk

2π
ρc(k)e

ikXj =

� π/H

−π/H

dk

2π
eikXj

� ∞�

p=−∞
ρc(kp)

�
(E.51)

where Xj is the coordinate of a grid point, H is the grid size, kp = k − pkg and

kg = 2π/H is the grid wave number. Then,

ρ(k) =
�

p

ρc(kp) = q
�

p

W (kp)n(kp) (E.52)

suggesting that the aliases with a separation of integral multiples of kg are coupled

through the grid. In PIC simulations, we only have finite number of particles, so
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the density and other grid-based quantities always have high-k component, which are

going to be folded into low-k components by aliasing. This introduces nosies to PIC

simulations. To reduce the noise, higher-order/smoother particle shape W (x) and

more particles per cell are preferred.

E.8 Diagnostics

The typical diagnostics include

• Energies of the E/M field, particles. Particle energy distribution and phase

space distribution.

• E, B, j, ρ one the grid. Calculating ∇ · E and ∇ · B makes sure that the

divergence clean procedures works.

• The fluid moments besides j and ρ, such as velocity v or momentum u, stress

tensor T.

• Power spectra E(k) of the fluctuating field.

• Particle trajectories of energetic particles.

We show below how to calculate particle drift in a Yee Lattice. It is tricky

to calculate the field and its derivatives at the particle position in Yee lattice shown

in Figure E.7. As the fields are sampled at different positions, the field indices and

weights will be different for different field when doing trilinear interpolation shown

in Figure E.8. We assume the cell numbers in each MPI process are nx, ny, nz in the

PIC simulation. All of the fields have dimensions nx + 2, ny + 2, nz + 2. E and B
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are staggered; Ex is sampled at the middle of x-directed cell edges, Bx is sampled at

the middle of yz-oriented cell faces and similarly for the y and z components (Bowers

et al., 2008). The hydro fields are sampled in the center of the cells. The position of

Bx(i, j, k) Bx(i+ 1, j, k)

By(i, j, k)

By(i, j + 1, k)

Bz(i, j, k)

Bz(i, j, k + 1)

Ex(i, j, k)

Ex(i, j + 1, k)

Ex(i, j, k + 1)

Ex(i, j + 1, k + 1)

Ey(i, j, k)
Ey(i+ 1, j, k)

Ey(i, j, k + 1) Ey(i+ 1, j, k + 1)

Ez(i, j + 1, k)

Ez(i, j, k) Ez(i+ 1, j, k)

Ez(i+ 1, j + 1, k)

(i, j, k)

Figure E.7 Yee lattice. i ∈ [1, nx], j ∈ [1, ny], k ∈ [1, nz]. The fields indices are in
[0, nx + 1], [0, ny + 1], [0, nz + 1].

one particle in this grid is δx ∈ [−1, 1], δy ∈ [−1, 1], δz ∈ [−1, 1], and the origin is

the center of the cell.

We assume the origin of Figure E.8 is (i1, j1, k1). For Ex and its derivatives,

j1 = j, k1 = k, Δy = 0.5(δy + 1), Δz = 0.5(δz + 1). When δx < 0, Δx = 0.5δx + 1

and i1 = i− 1. When δx ≥ 0, Δx = 0.5δx and i1 = i. This is similar for Ey, Ez and

their derivatives.
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(Δx,Δy,Δz)

Figure E.8 Trilinear interpolation. Δx,Δy,Δz ∈ [0, 1]. Q can be any component of
E, B and their derivatives. V1 · · ·V8 are the weights for the trilinear interpolation.
V1 = (1−Δx)(1−Δy)(1−Δz), V2 = Δx(1−Δy)(1−Δz), V3 = (1−Δx)Δy(1−Δz),
V4 = ΔxΔy(1 − Δz), V5 = (1 − Δx)(1 − Δy)Δz, V6 = Δx(1 − Δy)Δz, V7 = (1 −
Δx)ΔyΔz, V8 = ΔxΔyΔz.

For Bx and its derivatives, i1 = i, Δx = 0.5(1 + δx). When δy < 0, Δy =

0.5δy+1, j1 = j−1. When δy ≥ 0, Δy = 0.5δy, j1 = j. When δz < 0, Δz = 0.5δz+1,

k1 = k − 1. When δz ≥ 0, Δz = 0.5δz, k1 = k. This is similar for the other two

components.

Using these fields, particle curvature drift and gradient drift are calculated as

vg =
v2⊥b

2Ωce

× ∇B

B
, ∇B = b · ∂B

∂x
x̂+ b · ∂B

∂y
ŷ + b · ∂B

∂z
ẑ (E.53)

vc =
v2�b

Ωce

× κ (E.54)
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where Ωce = eB/(γmec).

κ = (b ·∇)b =
1

B
(b ·∇B)− B

B2
(b ·∇B)

=
1

B
(b ·∇Bxx̂+ b ·∇Byŷ + b ·∇Bz ẑ)−

B

B2
(b ·∇B) (E.55)
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W. Keith, A. Fazakerley, M. André, E. Lucek, and A. Balogh. Cluster observations
of electron holes in association with magnetotail reconnection and comparison to
simulations. Journal of Geophysical Research (Space Physics), 110:A01211, January
2005. doi: 10.1029/2004JA010519.

B. D. G. Chandran. Particle Acceleration by Slow Modes in Strong Compressible
Magnetohydrodynamic Turbulence, with Application to Solar Flares. The Astro-
physical Journal, 599:1426–1433, December 2003. doi: 10.1086/379317.

B. Chen, T. S. Bastian, C. Shen, D. E. Gary, S. Krucker, and L. Glesener. Particle
acceleration by a solar flare termination shock. Science, 350:1238–1242, December
2015. doi: 10.1126/science.aac8467.

Q. Chen and V. Petrosian. Impulsive Phase Coronal Hard X-Ray Sources in an
X3.9 Class Solar Flare. The Astrophysical Journal, 748:33, March 2012. doi:
10.1088/0004-637X/748/1/33.

G. F. Chew, M. L. Goldberger, and F. E. Low. The Boltzmann Equation and
the One-Fluid Hydromagnetic Equations in the Absence of Particle Collisions.
Royal Society of London Proceedings Series A, 236:112–118, July 1956. doi:
10.1098/rspa.1956.0116.

S. A. Colgate, H. Li, and V. Pariev. The origin of the magnetic fields of the universe:
The plasma astrophysics of the free energy of the universe. Physics of Plasmas, 8:
2425–2431, May 2001. doi: 10.1063/1.1351827.

Luca Comisso and Daniela Grasso. Visco-resistive plasmoid instability. Physics of
Plasmas (1994-present), 23(3):032111, 2016.

B. Coppi, R. Galvao, R. Pellat, M. Rosenbluth, and P. Rutherford. Resistive internal
kink modes. Sov. J. Plasma Phys., 2:533–535, November 1976.

J. T. Dahlin, J. F. Drake, and M. Swisdak. The mechanisms of electron heating
and acceleration during magnetic reconnection. Physics of Plasmas, 21(9):092304,
September 2014. doi: 10.1063/1.4894484.

168



Joel Timothy Dahlin. Electron acceleration in magnetic reconnection. PhD thesis,
University of Maryland, College Park, 2015.

B Dasgupta, Gang Li, Xiaocan Li, Abhay Ram, Qiang Hu, Gang Li, Gary P Zank,
Xianzhi Ao, Olga Verkhoglyadova, and James H Adams. Particle transport and
acceleration in a chaotic magnetic field: Implications for seed population to solar
flare and cme. In AIP Conference Proceedings-American Institute of Physics, volume
1500, page 56, 2012.

W. Daughton. The unstable eigenmodes of a neutral sheet. Physics of Plasmas, 6:
1329–1343, April 1999. doi: 10.1063/1.873374.

W. Daughton and V. Roytershteyn. Emerging Parameter Space Map of Magnetic
Reconnection in Collisional and Kinetic Regimes. Space Science Reviews, 172:271–
282, November 2012. doi: 10.1007/s11214-011-9766-z.

W. Daughton, J. Scudder, and H. Karimabadi. Fully kinetic simulations of undriven
magnetic reconnection with open boundary conditions. Physics of Plasmas, 13(7):
072101, July 2006. doi: 10.1063/1.2218817.

W. Daughton, V. Roytershteyn, B. J. Albright, H. Karimabadi, L. Yin, and K. J.
Bowers. Influence of Coulomb collisions on the structure of reconnection layers.
Physics of Plasmas, 16(7):072117, July 2009a. doi: 10.1063/1.3191718.

W. Daughton, V. Roytershteyn, B. J. Albright, H. Karimabadi, L. Yin, and K. J.
Bowers. Transition from collisional to kinetic regimes in large-scale reconnection
layers. Physical Review Letters, 103(6):065004, August 2009b. doi: 10.1103/Phys-
RevLett.103.065004.

W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B. J. Albright, B. Bergen,
and K. J. Bowers. Role of electron physics in the development of turbulent magnetic
reconnection in collisionless plasmas. Nature Physics, 7:539–542, July 2011. doi:
10.1038/nphys1965.

C. Dauphin, N. Vilmer, and A. Anastasiadis. Particle acceleration and radiation
in flaring complex solar active regions modeled by cellular automata. Astronomy &
Astrophysics, 468:273–288, June 2007. doi: 10.1051/0004-6361:20065131.

M. I. Desai, G. M. Mason, J. R. Dwyer, J. E. Mazur, R. E. Gold, S. M. Krimigis,
C. W. Smith, and R. M. Skoug. Evidence for a Suprathermal Seed Population of
Heavy Ions Accelerated by Interplanetary Shocks near 1 AU. The Astrophysical
Journal, 588:1149–1162, May 2003. doi: 10.1086/374310.

J. F. Drake and M. Swisdak. The onset of ion heating during magnetic reconnec-
tion with a strong guide field. Physics of Plasmas, 21(7):072903, July 2014. doi:
10.1063/1.4889871.

169



J. F. Drake, M. Swisdak, C. Cattell, M. A. Shay, B. N. Rogers, and A. Zeiler. For-
mation of Electron Holes and Particle Energization During Magnetic Reconnection.
Science, 299:873–877, February 2003. doi: 10.1126/science.1080333.

J. F. Drake, M. A. Shay, W. Thongthai, and M. Swisdak. Production of Energetic
Electrons during Magnetic Reconnection. Physical Review Letters, 94(9):095001,
March 2005. doi: 10.1103/PhysRevLett.94.095001.

J. F. Drake, M. Swisdak, H. Che, and M. A. Shay. Electron acceleration from
contracting magnetic islands during reconnection. Nature, 443:553–556, October
2006. doi: 10.1038/nature05116.

J. F. Drake, M. A. Shay, and M. Swisdak. The Hall fields and fast magnetic recon-
nection. Physics of Plasmas, 15(4):042306, April 2008. doi: 10.1063/1.2901194.

J. F. Drake, P. A. Cassak, M. A. Shay, M. Swisdak, and E. Quataert. A Magnetic
Reconnection Mechanism for Ion Acceleration and Abundance Enhancements in
Impulsive Flares. The Astrophysical Journal Letters, 700:L16–L20, July 2009a. doi:
10.1088/0004-637X/700/1/L16.

J. F. Drake, M. Swisdak, T. D. Phan, P. A. Cassak, M. A. Shay, S. T. Lepri,
R. P. Lin, E. Quataert, and T. H. Zurbuchen. Ion heating resulting from pickup in
magnetic reconnection exhausts. Journal of Geophysical Research (Space Physics),
114:A05111, May 2009b. doi: 10.1029/2008JA013701.

J. F. Drake, M. Opher, M. Swisdak, and J. N. Chamoun. A Magnetic Reconnec-
tion Mechanism for the Generation of Anomalous Cosmic Rays. The Astrophysical
Journal, 709:963–974, February 2010. doi: 10.1088/0004-637X/709/2/963.

J. F. Drake, M. Swisdak, and R. Fermo. The Power-law Spectra of Energetic Particles
during Multi-island Magnetic Reconnection. The Astrophysical Journal Letters, 763:
L5, January 2013. doi: 10.1088/2041-8205/763/1/L5.

L. O. Drury. An introduction to the theory of diffusive shock acceleration of energetic
particles in tenuous plasmas. Reports on Progress in Physics, 46:973–1027, August
1983. doi: 10.1088/0034-4885/46/8/002.

James W Eastwood. The virtual particle electromagnetic particle-mesh method.
Computer Physics Communications, 64(2):252–266, 1991.

J. Egedal, W. Fox, N. Katz, M. Porkolab, M. ØIeroset, R. P. Lin, W. Daughton,
and J. F. Drake. Evidence and theory for trapped electrons in guide field magne-
totail reconnection. Journal of Geophysical Research (Space Physics), 113:A12207,
December 2008. doi: 10.1029/2008JA013520.

J. Egedal, W. Daughton, J. F. Drake, N. Katz, and A. Lê. Formation of a localized
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