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Abstract

The past decade has seen an outstanding development of nonthermal particle acceleration in magnetic reconnection
in magnetically dominated systems, with clear signatures of power-law energy distributions as a common outcome
of first-principles kinetic simulations. Here we propose a semianalytical model for systematically investigating
nonthermal particle acceleration in reconnection. We show particle energy distributions are well determined by
particle injection, acceleration, and escape processes. Using a series of kinetic simulations, we accurately evaluate
the energy- and time-dependent model coefficients. The resulting spectral characteristics, including the spectral
index and lower and upper bounds of the power-law distribution, agree well with the simulation results. Finally, we
apply the model to predict the power-law indices and break energies in astrophysical reconnection systems.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Plasma astrophysics (1261)

1. Introduction

Nonthermal particle acceleration processes during magnetic
reconnection are plausible mechanisms responsible for high-
energy emissions observed in magnetically dominated systems,
such as relativistic jets from gamma-ray bursts (Zhang &
Yan 2011; McKinney & Uzdensky 2012) and active galactic
nuclei (Giannios et al. 2009; Zhang et al. 2015, 2018), pulsar
wind nebulae (Uzdensky & Spitkovsky 2014), and solar
flares (Lin et al. 2003). Recently, interest has surged in
studying particle acceleration and the resulting particle energy
spectra, mainly via particle-in-cell (PIC) simulations (Guo et al.
2014; Sironi & Spitkovsky 2014). These studies have
successfully obtained power-law energy spectra f (ε)∝ ε− p

with spectral index p decreasing with the plasma magnetization
σ and approaching 1 when σ 10 (Sironi & Spitkovsky 2014;
Guo et al. 2014, 2016; Werner et al. 2016). However, the origin
of the nonthermal energy spectrum and how it varies in
different situations is still undergoing active debate.

Despite the advances in kinetic simulations (Hoshino et al.
2001; Zenitani & Hoshino 2001; Sironi & Spitkovsky 2014;
Liu et al. 2011; Dahlin et al. 2014; Guo et al. 2014, 2016; Li
et al. 2015, 2018), theoretical explorations on particle
acceleration have limited success in predicting the resulting
energetic particle spectrum. Although a simple derivation
shows p∼ 1 when particle escape is ignored (Guo et al.
2014, 2015), numerous simulations have consistently obtained
p> 2, indicating some key physics is still missing (Ball et al.
2018; Werner et al. 2018; Uzdensky 2022). In addition, how
the resulting energy spectra vary with the guide field, and how
the results from kinetic simulations can be extrapolated to
astrophysical scales are not clear.

In this Letter, we present a model for particle acceleration in
magnetic reconnection. In contrast to previous studies, we
consider particle injection, acceleration, and escape together as
key ingredients for understanding the energy spectra and
evaluate them in a reconnection system. In a series of fully

kinetic simulations, we quantify the acceleration (both first-
order and second-order) and escape processes with their time
and energy dependence. We use the model coefficients to
predict the nonthermal power-law characteristics (spectral
indices, lower and higher bounds of the power-laws) based
on a Fokker–Planck approach and find that the prediction
matches the simulations very well. While our model is capable
of explaining nonthermal acceleration in kinetic simulations in
general, it also reveals essential physical factors that determine
the energetic particle spectrum, making a crucial step toward a
comprehensive understanding of those processes in large-scale
astrophysical systems.

2. A Model

Figure 1(a) illustrates our model. The reconnection inflow
continuously brings thermal particles into the reconnection
layer, where a fraction of them can be accelerated out of the
thermal pool through particle injection processes (Ball et al.
2019; Kilian et al. 2020; French et al. 2023; Sironi 2022; Guo
et al. 2023). A primary acceleration phase then leads to the
formation of a power-law distribution. While most reconnec-
tion studies focus on the first-order acceleration (Guo et al.
2014, 2015), our model includes the second-order Fermi
acceleration, which is found to be comparable to the first-order
mechanism (see below). This second-order acceleration can be
due to the inhomogeneous distribution of island acceleration, or
turbulent-like behavior, similar to relativistic turbulence (Wong
et al. 2020; Comisso & Sironi 2018, 2019). In addition, we find
that particle escape plays an important role in determining the
spectral shape. Since particles do not participate in the
acceleration once they are trapped by the largest magnetic
islands/flux ropes, they are considered separately as an
effective “escape” process. Together, we consider these
processes in a Fokker–Planck approach (Blandford & Eich-
ler 1987) describing the evolution of the particle energy
distribution f (ε), according to
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where ε= (γ− 1)msc
2 is the kinetic energy, αacc is the

acceleration rate, Dεε :=D0ε
2 is the energy diffusion coeffi-

cient, a tº -
esc esc

1 is the escape rate, finj is the injected thermal
particle distribution, and τinj is particle injection timescale.
αacc := (∂tε+ ∂εDεε)ε

−1 describes a combination of the first-
order Fermi processes and the accompanying first-order term
associated with second-order Fermi mechanisms. Instead of
separating the injection and nonthermal acceleration, we will
treat them as a continuous process and determine αacc and D0

due to parallel or perpendicular electric fields (E∥ and E⊥).
We assume that reconnection starts from a single elongated

current sheet (with a length of Lx), which breaks into a series of
magnetic islands (or flux ropes in 3D; Loureiro et al. 2007;
Bhattacharjee et al. 2009). These islands tend to merge to form
larger islands and secondary islands are continuously gener-
ated. The entire process lasts a few Alfvén-crossing times
τA := Lx/VAx until most magnetic flux is reconnected, where
VAx is the reconnection outflow speed. The total number of
particles in the reconnection layer due to the reconnection
inflow is µdN dt RVAx (where the reconnection rate R∼ 0.1;
Liu et al. 2017; Goodbred & Liu 2022). The largest islands
grow in the size of LO= di+ RVAxt, assuming they are initially
in the di (ion inertial length) scale. For the rest of the
discussion, nacc(ε) and nesc(ε) are the numbers of the
accelerating and escaped particles in different energy bins,
respectively.

For a single electron, the acceleration rate due to the parallel
electric field is −eE∥ · v/ε. Since E∥≈ ER= RVAxB0/c near the
X-lines and ≈0 rest of the reconnection layer, the acceleration

rate due to E∥ is

a e= á- ñE ve , 2acc · ( ) 

m e» á ñ -ecE F , 3R E X
1

X ( )

where á ñ indicates the ensemble average over nacc(ε)
particles, á ñX is the average over nX(ε) particles near the
X-lines, and μE :=−v ·E∥/(vE∥). The filling factor of these
electrons FX∼ de/LO∼ t−1 for large t. má ñ » 0E X for low-
energy thermal electrons with nearly isotropic distributions and
increases when they are accelerated by E∥ or the Fermi
mechanism (Drake et al. 2006). We will determine the exact
energy dependence using the simulation results. The energy
diffusion rate due to E∥ is

da t m e a t=á ñ » á ñ --D e c E F: R E0 acc
2

dec
2 2 2 2

X
2

X acc
2

dec( ) ( )    ,
where δαacc∥=−eE∥ · v/ε− αacc∥ is the fluctuation of αacc∥
and τdec∥∼ di/c is the decorrelation time for E∥ (the timescale
on which particles see decorrelated E∥; le Roux et al. 2015). It
indicates how fast the broadening of the energy distribution is
due to E∥. Since a µ µ -F tacc

2
X
2 2

 for large t, the first term
dominates. For particles with an anisotropy along the magnetic
field, má ñE

2
X changes slowly between 0.5 and 1. Therefore,

e t» -D e c E F . 4R0
2 2 2 2

X dec ( ) 

The acceleration rate due to E⊥ is

a e= á- ñ^ Ê ve , 5acc · ( )

as particles gain energy through the Fermi mechanism when
colliding with the reconnection outflow (Guo et al. 2014). The
energy gain of each collision is about
e eD = G + + -V v c V c1 2 1Ax Ax x Ax

2 2 2 2( ( ) ) , and the collision
timescale is about LO/vx, where G = - -V c1Ax Ax

2 2 1 2( ) , and
vx is the particle velocity along the reconnection outflow
direction. When there is a guide field Bg= bgB0,

~ +v c b1x g
1 2( ) on average, and s s= +V c 1Ax x ( ) (Liu

et al. 2015). s p= B w4x 0
2 is plasma magnetization based on

the reconnection magnetic field B0 (Liu et al. 2015), where w is
the enthalpy density. σ= B2/4πw is total plasma magnetiza-
tion, where = +B B Bg0

2 2 1 2( ) . Thus, VAx decreases with bg
and increases with σx. We obtain

a
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where βAx= VAx/c. When the power-law index p< 2 in highly
magnetized plasmas, most of the kinetic energy is in the high-
energy tail (Guo et al. 2014; Sironi & Spitkovsky 2014), and
the enthalpy density w keeps increasing. The resulting
momentum flux density Gw VAx Ax

2 2 will keep increasing if VAx

stays constant, which is not sustainable. Thus, we expect the
reconnection outflow to decrease gradually in highly magne-
tized plasmas (see Appendix A), resulting in an approximately
constant momentum flux density. The energy diffusion rate due
to the Fermi mechanism is b l~ G^

-D c 3Ax Ax0
2 2

mfp
1 (Comisso &

Sironi 2019; Lemoine 2019), where l ~ +L b1 gmfp O
2 1 2( ) is

Figure 1. (a) A schematic diagram illustrating the main processes. The blue
and orange regions represent the acceleration and escape regions, respectively.
The black curve shows one typical particle trajectory. (b) Two electron
trajectories in the kinetic simulations. The orange crosses indicate when
particles reach their final energies. The background is at t ≈ 2.44τlc, where
τlc = Lx/c. (c) Time evolution of the electron energies. The colored lines are
the smoothed data that removed the gyromotion effects.
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scattering mean free path. Thus,

b~ G +^
- -D L b c

1

3
1 . 7Ax Ax g0

2 2
O

1 2 1 2( ) ( )

Since energetic particles escape the acceleration region when
advected by the reconnection outflow, the escape rate is

a = dn dt n , 8esc esc acc( ) ( )
~V L . 9Ax O ( )

3. Numerical Simulations

We test the proposed model through a series of 2D PIC
kinetic simulations of magnetic reconnection in a proton–
electron plasma in the xz-plane. The simulations all start from a
force-free current sheet (Guo et al. 2014). The boundaries along
x are periodic for both fields and particles. The boundaries
along z are reflective for particles and perfectly conducting for
fields. A long-wavelength perturbation with δBz= 0.03B0 is
included to initiate reconnection (Birn et al. 2001). We
performed the simulations in proton–electron plasmas
(mi/me= 1836) similar to earlier studies (Werner et al. 2018;
Ball et al. 2019; Kilian et al. 2020). The cold ion magnetization
parameters
s p= ÎB n m c: 4 0.4, 1.6, 6.4, 25.6, 102.4i iic 0

2 2( ) [ ]. The guide
fields bgä [0.0, 0.5, 1.0, 2.0]. The plasmas are initially uniform
with density n0 and follow the Maxwell–Jüttner distributions
with a normalized electron temperature θe= kTe/mec

2= 10σic
and Ti= Te, resulting in σx= 0.39, 1.51, 5.2, 13.0, and 19.7 for
the runs with different σic. The domain sizes are
Lx× Lz= L0× L0/2, where q=L d4096 e e0 0 and

p=d c m n e: 4e e0 0
2 is the nonrelativistic electron inertial

length. The domain is resolved with a grid
nx× nz= 8192× 4096, and the resulting cell sizes

qD = D = =x z d d0.5 0.5e e e0 , where de is the electron
inertial length including the relativistic correction. With
bg= 0.0, we performed three additional simulations with
Lx ä [L0/4, L0/2, 2L0] and the same cell sizes for each σic to
examine the system size dependence. We use 100 particles/
cell/species and track about 1 million tracer particles at a high
cadence to calculate the model coefficients. These tracer
particles are a small, uniformly selected subset of all electrons,
and they evolve self-consistently along with the rest of the
particles.

4. Model-simulation Comparison

In all simulations, electron energy spectra develop power-
law tails with various power-law indices. Figure 2(a) shows a
sustainable power-law spectrum with a stable p= 2.5 and
cutoff energy eb¯ linearly increasing with time. This result
suggests that the cutoff energy increases with the box sizes,
confirmed in Figure 2(b). As the magnetization increases, the
reconnection outflow and the acceleration rate due to the
motional electric field will become faster, resulting in a harder
spectrum (see Figure 5). Similarly, the guide field will slow
down the outflow and the Fermi acceleration, leading to a softer
spectrum (see Figure 5). We will demonstrate that the model
can capture these dependencies.

To evaluate the model coefficients in simulations, we must
separate particles into the accelerating and the escaped
populations. Figures 1(b) and (c) show two electron trajectories
to illustrate the escape mechanism. The two electrons gain

substantial energies before being confined inside the large
magnetic island. Their kinetic energies fluctuate without much
change after that. Thus, they are treated as escaped particles
after their acceleration stops. After separating the two
populations, one can calculate acceleration and escape rates
using Equations (2), (5), and (8). The process is repeated at
every step of the tracer particles, allowing us to measure how
the rates change over time. We evaluate D0 by tracking the
energy spread of the particles in different energy bins (Comisso
& Sironi 2019; Wong et al. 2020). Figure 3 shows the energy
dependence of the rates in the runs with σic= 102.4. αacc∥
peaks around e = 10¯ and decreases when e > 10¯ , following
the scaling in Equation (3). Figure 3(b) shows that αacc∥ peaks
at higher energies when bg> 0, due to the increasing má ñE X
with bg (Li et al. 2018). The transition energy
e e= » +kT b12 10 tanh 2t t e g¯ ( ) ( ) according to the simula-
tions and the dashed lines in Figure 3(b) follow the energy
dependence

a
e e e

e e
~ ´

+
-2.5 10

1
, 10t t

t
acc

5
3 2

2 3 2

¯ (¯ ¯ )
( (¯ ¯ ) )

( )

which is e~ 2¯ for low-energy particles and e~ -1¯ for high-
energy particles (Equation (3)). This energy dependence is
determined by fitting the energy-dependent αacc∥ to achieve a
smooth transition between the two parts. As the rates exhibit
significant temporal fluctuations, as illustrated in Figure 4, the
coefficient should be treated as an approximation rather than an
exact value. αacc⊥ is nearly constant, as expected from
Equation (6). In Figure 3(a), we adopt a
b s s= < +0.8 1Ax x ( ) due to the decelerating reconnec-
tion outflow. Figure 3(a) shows that while the primary
acceleration mechanism at high energies is the Fermi process,
the direct and Fermi mechanisms are comparable at low
energies, consistent with prior findings by Guo et al. (2019).
Regarding the escape, αesc increases with particle energy until
it saturates at a constant ∼VAx/LO, consistent with
Equation (9). When bg is finite, the larger anisotropy indicates
that more particles can escape from the acceleration region by
streaming along the magnetic field lines. Consequently, αesc

peaks around εt (Figure 3(c)), at which the anisotropy is the
largest. We use the following function to model the energy

Figure 2. Electron energy spectra in the runs with σic = 6.4. (a) Time evolution
of the spectra when bg = 0.0. The insets show the time evolution of the cutoff
energy and the power-law index. (b) The spectra in runs with bg = 0.0 but
different Lx. The inset shows the cutoff energy changing with Lx. L0 = 4096de
for these runs.
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dependency of αesc from low to high energies:
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where et0¯ is e =b 0t g¯ ( ). αesc∝ ε2 for low-energy particles and
approaches and ∼VAx/LO for high-energy particles
(Equation (9)). Similar to Equation (10), the energy depend-
ence is established by fitting energy-dependent αesc to achieve
a smooth transition between the low-energy and high-energy
parts. The complex form accounts for the peak that arises near
the transition energy εt. Figure 3(c) shows some discrepancies
at low energies, especially for the bg= 2 (purple curve) case.
Such discrepancies are caused by the strong temporal
fluctuations in the rates (Figure 4), likely due to the initial
condition or boundary conditions in the simulations.
Figure 3(a) shows that D0 is dominated by D0∥∝ ε−2

(Equation (4)) at low energies and D0⊥∼ constant
(Equation (7)) at high energies.
Figure 4 shows how the rates change with time. Figure 4(a)

shows that αacc∥∝ t−1, following the scaling in Equation (3). It
is larger when there is a finite guide field, agreeing with
Figure 3(b). Although αacc⊥ strongly fluctuates (Figure 4(b)), it
decreases with time, as expected from Equation (6). αacc⊥ can
be ∝t−2 when σ is large enough due to the decelerating
reconnection outflow (see Appendix A). Figure 4(c) shows that
αesc∼ t−1, consistent with Equation (9). For more model-
simulation comparison of the time dependence, see
Appendix B.
We then solve the Fokker–Planck equation using the energy-

and time-dependent rates (see Appendix C for details).
Figure 5(a) and (b) show that the modeled spectra (thick lines)
agree well with those in the simulations (thin lines). The model
can capture the spectra σ- and bg-dependences and the power-
law break energies εb. Despite some notable agreements
between the simulation and model results, as depicted by the
overlaying orange curves in Figure 5(a) and the green and blue
curves in Figure 5(b), there exist discrepancies between the
simulation results and model results. Such discrepancies can be
attributed to the settings of the simulations, such as the initial
and boundary conditions, as well as the constrained system
sizes. Consequently, the model results are anticipated to reveal
the overall patterns but not necessarily replicate the simulation
results exactly.
Since the model is simple enough, we can predict the spectra

for much larger systems and study their long-term evolution.
The insets of panels (a) and (b) show that p gradually increases
until saturation at a constant value in large enough systems.
Since the guide field plays a more important role in the high-bg
reconnection, it takes a larger box (up to 103L0 when bg= 2)
for the spectra to saturate. The model also shows that the break
energy linearly increases with the system size up to 106 times
the PIC simulation sizes. Thus, the model can predict the
spectra in astrophysical reconnection sites. Figures 5(c) and (d)
show the spectral indices and the gyroradius of the break
energies, normalized by the system sizes L. When bg= 0, p
approaches 2.1 as the σx increases, indicating that the power-
law extension can keep growing without causing the kinetic
energy to diverge. When bg is finite, the spectra are the hardest

Figure 3. The energy dependence of the rates in the runs with σic = 102.4. (a)
The rates in the run with bg = 0. The dashed lines are based on the model
scalings. (b) αacc∥ for the runs with different guide fields. The dashed lines
follow the scaling. (c) αesc for these runs.

Figure 4. (a) The time dependence of the rates within the selected energy bin
for runs with different bg. (b) and (c) The acceleration and escape rates for runs
with different σic. The dashed lines follow the predicted scalings in
Equations (3), (6), and (9) except in (b), where αacc⊥ ∝ t−2 when σic = 102.4.
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when the σx is between 1 and 10. p can be approximated as

s
s»

+ +
+

+ +

p
b

b

b

1

0.2 1 tanh
0.04 tanh

1.7 2.1, 12
x g

g x

g

( ( ))
( )

( )

where the first two terms capture the variation with σx when the
guide field is finite. When bg= 0, s» + +-p 0.2 2.1x

1( ) . For
a fixed magnetization σx, the spectrum becomes softer as the
guide field becomes stronger. Figure 5(d) shows the gyroradius
of the electrons with the break energies
(ρb := (εb/mec

2+ 1)mec/eB0) is a fraction of the system size
L. When bg= 0, ρb increases with σx and approaches 0.007
times the system sizes at 2τA. When bg is finite, ρb peaks when
σx is a few, suggesting the acceleration is most efficient when
the σx is between 1 and 10. ρb can be approximated as

r
= - +s s- - -

L
e e b0.007 1 1 13b b

g
0.6 0.06 tanh 2 1x g x( ) ( ) ( )( )

at 2τA. When bg= 0, r = - s-L e0.007 1b
0.6 x( ). When bg is

finite, ρb peaks when the σx is between 1 and 10. For a fixed σx,
ρb monotonically decreases with the guide field. Note that
Equations (12) and (13) rely only on the hot magnetization
parameter σx and the guide field strength bg. Nonetheless, the
equations are applicable to proton–electron plasmas under the
conditions where 0.1< σx< 100 and electrons are relativistic.
Although the equations can be potentially used for pair plasmas
as they do not depend on the ion-to-electron mass ratio, they
have not been thoroughly verified against fully kinetic
simulations using pair plasmas.

5. Discussion and Conclusions

The present study builds upon the prior research by Guo
et al. (2014, 2015) and makes improvements in the following
aspects: first, instead of separating the injection and the
nonthermal acceleration, it treats them as a continuous process
and incorporates the energy-dependence of acceleration rates;
second, it incorporates second-order acceleration, including

those due to the parallel electric field and the Fermi
mechanism; third, it accurately evaluates particle escape rate
in the simulations and compares it with the model results;
fourthly, it extends the model to proton–electron plasmas; and
lastly, besides plasma magnetization, it considers the effect of
guide fields on particle acceleration. While these processes are
more or less studied in previous studies individually, this study
is the first attempt to put these processes together in the same
model.
Some important physics is still missing in the current model

and could be the key to addressing the particle acceleration in
the astrophysical reconnection sites. First, previous research
has demonstrated that radiative cooling, such as synchrotron or
inverse Compton cooling, significantly impacts the acceleration
mechanisms and the dynamics of the current layer, even when
cooling is only marginally important (Zhang et al. 2018;
Hakobyan et al. 2019; Werner et al. 2019; Sironi &
Beloborodov 2020; Sridhar et al. 2021). Second, 3D reconnec-
tion can self-generate plasma turbulence (Daughton et al. 2011;
Guo et al. 2014), which could affect particle transport and
acceleration (Dahlin et al. 2015; Li et al. 2019; Zhang et al.
2021b), and change particle acceleration and escape
mechanisms (Zhang et al. 2021a). However, other studies have
shown that 3D physics is not as crucial in the relativistic regime
as in the nonrelativistic regime (Guo et al. 2021). Our
preliminary results indicate that the spectra are not saturated
to the end of the simulation due to the limited system sizes of
the 3D simulations. Thus, incorporating 3D effects in the
model requires more studies using massive 3D kinetic
simulations, which are currently not affordable for revealing
the scalings in system sizes. Third, the simulation setup,
including boundary conditions and initialization (Ball et al.
2018), may impact the energy dependence and the time
evolution of the rates, as shown in Figures 3 and 4. These could
lead to the deviation of the modeling predictions from the
simulation results, given that the semianalytical model still
needs empirical fitting of the kinetic simulation results. These
simulations are essential in determining the energy dependen-
cies at low energies and quantifying the constants in each rate
for different simulation setups. Addressing all these factors

Figure 5. (a) Comparing the electron spectra obtained from the model (thick lines) and those in the simulations (thin lines) with bg = 0.0 and different σic. (b)
Comparing the spectra in the runs with σic = 102.4 and different bg. The insets of panels (a) and (b) show the power-law indices and break energies obtained from the
models for systems of different sizes. The vertical black line indicates the size of the PIC simulations (L0). (c) Power-law indices in astrophysically relevant systems
with different σx and bg. The dashed are the fittings. (d) The gyroradius of the electrons with the break energies.
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using fully kinetic simulations is critical to making the model
more reliable for extending the kinetic simulation results to
astrophysical reconnection systems.

In this Letter, we presented a model for determining the main
characteristics of power-law particle energy spectra in magnetic
reconnection in magnetically dominated plasmas. The power-
law spectrum produced by this model is controlled by particle
injection, acceleration, energy diffusion, and escape processes.
Using a series of first-principles 2D kinetic simulations, we
evaluated these transport coefficients and obtained nice
agreements with simulation results. By solving the Fokker–
Planck equation describing these processes using the modeled
transport coefficients, we demonstrate that the modeled spectra
agree well with the simulation results for a broad range of
magnetization and guide fields. We then use the simulation-
verified model to predict the power-law spectral indices and
break energies for astrophysically relevant reconnection
systems and provide their empirical expressions for different
magnetization and guide fields. Our results have strong
implications for understanding nonthermal particle acceleration
and emissions in high-energy astrophysical systems.
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Appendix A
Decelerating Reconnection Outflow

Figure 6 shows that the reconnection outflow is decelerating
as reconnection evolves. The deceleration is the strongest when
the guide field is weak and the particle acceleration is the most
efficient.

Appendix B
Time Dependence of the Rates

Figure 7 shows how the rates change with time for runs with
different bg. Although αacc⊥ strongly fluctuates (Figure 7(a)), it
decreases with time and bg, as expected from Equation (6) in
the main text. When bg= 0, due to the decelerating reconnec-
tion outflow (see Appendix C), αacc⊥ decreases faster than t−1.
Figure 7(b) shows that αesc is higher when there is a finite
guide field. αesc∼ t−1 (consistent with Equation (9) in the main
text) even as the reconnection outflow slows down when bg= 0
and σ is large (Figure 7(f)) because VAx can be close to c while
ΓAx decreases significantly. The energy diffusion rate D0

strongly fluctuates but gradually decreases with t. When bg= 0,
it decreases faster than t−1 due to the decelerating outflow.

Appendix C
Solving the Fokker–Planck Equation

We solve the Fokker–Planck Equation (1) using the energy-
and time-dependent rates. The acceleration part of Equation (1)
is equivalent to the stochastic differential equation (SDE) of the
Itô type,

e a a e e= + + +^ ^d dt D D dW2 , C1tacc acc 0 0
2( ) ( ) ( ) 

where Wt is the standard Wiener process, and dWt is the
normalized distributed random number with mean 0 and
variance Δt. The SDE can be solved using pseudo particles.
We apply a taper function εO/(εO+ ε) to αacc⊥ and D0⊥ when
solving the equation to model the reduction of the rates with
particle energies when their gyroradius is close to the largest
island size. Specifically, we use

e = + GeB b L m c1 10 , C2g e AxO 0
2

O ( ) ( )

which includes the correction when the outflow is relativistic.
Motivated by the simulation results, we model the reconnection
rate R≈ 0.1VAx/VA0, where s s= +V 1A x x0 ( ) . As a result,
the number of injected particles and the parallel electric field

Figure 6. Time evolution of G- -V Vx xmax max( ) in simulations with σic = 102.4,
where -Vx max is the maximum outflow speed at the mid-plane and G -Vx max( ) is
the corresponding Lorentz factor. τlc is the light-crossing time.

Figure 7. The time dependence of the rates within the selected energy bin for
runs with different bg. The dashed lines follow the predicted scalings
~ ~- -L tO

1 1 in Equations (6), (9), and (7).
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have a strong dependence on the guide field. After updating the
energies of the pseudo particles at each time step according to
Equation (C1), we determine whether the particles escape
according to the escape rate and inject new pseudo particles.
Before the next cycle, we evaluate the enthalpy density of the
particles and update the outflow speed VAx assuming a constant
momentum flux density.
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