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ABSTRACT

Magnetic reconnection is a primary driver of particle acceleration processes in space and astrophysical plasmas. Understanding how particles
are accelerated and the resulting particle energy spectra are among the central topics in reconnection studies. We review recent advances in
addressing this problem in nonrelativistic reconnection that is relevant to space and solar plasmas and beyond. We focus on particle
acceleration mechanisms, particle transport due to 3D reconnection physics, and their roles in forming power-law particle energy spectra.
We conclude by pointing out the challenges in studying particle acceleration and transport in a large-scale reconnection layer and the rele-
vant issues to be addressed in the future.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0047644

I. INTRODUCTION

In space, solar, and astrophysical plasmas, magnetic reconnection
is one of the primary mechanisms for converting magnetic energy into
plasma kinetic energy and accelerating high-energy nonthermal
particles.1 One remarkable example is solar flares, where magnetic
reconnection is thought to trigger the release of a large amount of
magnetic energy in the solar corona2–5 and drive the acceleration of a
large number of nonthermal electrons and ions. These particles pro-
duce a broad range of nonthermal emissions (hard x ray, microwave,
and gamma ray).6–11 Some of the accelerated particles get released into
interplanetary space as impulsive solar energetic particles.12,13

Understanding how particles are accelerated during reconnection and
the resulting particle energy distributions has been a central problem
in the study of magnetic reconnection.

One ubiquitous feature revealed by observations is that the acceler-
ated particles tend to develop power-law energy spectra.14–16 Solar flare
emissions often show power-law energy distributions and are presum-
ably produced by nonthermal particles with power-law distribu-
tions.10,16–20 Although other mechanisms may also accelerate particles,
reconnection holds the promise to accelerate a large number of
electrons,21 as suggested by some observations.18,22 In addition,

reconnection-accelerated particles may serve as an injection population
to be further accelerated by other mechanisms, such as termination
shocks,7,23,24 plasma turbulence14,25–28 driven by reconnection outflow
and large-scale Alfv�en waves in the flare loops.29 Thus, it is crucial to
understand particle acceleration by solar flare reconnection. In situ
observations in space plasmas give more direct evidence of power-law
formation in the reconnection regions. In Earth’s magnetotail, electrons
develop power-law energy spectra near the reconnection diffusion
region,30,31 inside magnetic islands,32–34 and in the flux pileup
region.35,36 In solar wind, local enhancements of energetic particles and
the formation of power-law energy spectra have been associated with
contracting and merging small-scale flux ropes.37–42 Motivated by these
observations, many studies have been dedicated to investigating particle
acceleration associated withmagnetic reconnection.While the analytical
studies have made predictions consistent with observations,40–44 the
whole process can be very nonlinear and numerical simulations still
have to provide convincing evidence for power-law formation during
reconnection. Test-particle simulations (either in full orbit or guiding-
center motions) usually generate hard power-law energy spectra, much
harder than that observed in space and solar plasmas.45–50 Comparing
with the kinetic simulations of relativistic reconnection (the Alfv�en
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velocity approaches the speed of light) that consistently produce hard
power-law energy spectra,51–55 simulations in the nonrelativistic regime
relevant to space and solar plasmas show persistent difficulties in
obtaining power-law spectra.56–60

In this review, we focus on the critical issues for understanding
energetic particle acceleration and power-law formation in reconnec-
tion. First, what are the dominant particle accelerationmechanisms dur-
ing magnetic reconnection? Traditionally, it is thought that particles are
accelerated only by the non-ideal electric field near the reconnection X-
line,61 which cannot explain the large number of electrons generated
during solar flares. Recent studies have made significant progress show-
ing that Fermi-type mechanisms are important for particle acceleration
during reconnection.21,52,58,59 While the acceleration mechanisms are
similar in different regimes, power-law energy spectra are only com-
monly seen in the relativistic simulations, suggesting that the plasma
parameters (e.g., Alfv�en velocity, plasma b, or guide field—the magnetic
field component perpendicular to the reconnection plane) might play a
significant role in the power-law formation. The broad distributions of
these parameters in space and solar plasmas could explain why the
power-law indices range broadly from 2 to 9 (Refs. 6, 16, 18–20, 62). [In
the rest of this paper, a power-law energy spectrum is defined as
f ðeÞ ¼ dNðeÞ=de � e�p, where e is particle kinetic energy, dNðeÞ is the
number of particles in a spherical energy shell with thickness de around
e, and p is the spectral index.] Second, how do particles propagate in the
reconnection region? To gain more energy, particles have to be trapped
in the acceleration region for a long time or access the acceleration
region multiple times. Both depend on the waves and turbulence in the
reconnection region and will become even more important in the 3D
reconnection layer that can self-generate plasma turbulence.63–73 This
review summarizes some recent progress on these two issues and points
out several problems to be addressed in the next step. In Sec. II, we sum-
marize particle acceleration mechanisms during reconnection and three
closely linked views on the Fermi mechanism. In Sec. III, we summarize
how 3D physics facilitate particle transport and acceleration. In Sec. IV,
we present a model for explaining the power-law formation in 3D
reconnection. In Sec. V, we point out the challenges in studying particle
acceleration in a large-scale reconnection layer and the relevant issues to
be addressed in the future.

II. PARTICLE ACCELERATION MECHANISMS
A. Particle acceleration sites

The reconnection region is a natural particle acceleration site.
Continuous magnetic flux comes into the reconnection region and
deposits its free energy. At the same time, fresh, low-energy particles
are brought in through the reconnection inflow, get accelerated in the
reconnection region, and escape as the outflow expels them out of the
reconnection region. It has been demonstrated that the reconnection
proceeds at a speed fast enough74,75 to sustain the efficient magnetic
energy conversion and particle acceleration observed in Earth’s mag-
netotail and solar flares. During reconnection, the non-ideal electric
field near the reconnection X-point can accelerate a small fraction of
particles (mostly electrons).76–81 More importantly, reconnection-
driven Alfv�enic outflow on a much larger scale will induce motional
electric fields that are more broadly distributed than the non-ideal
electric field and can accelerate more particles.54 Recent studies have
demonstrated that an elongated current sheet will break into a chain
of magnetic islands (plasmoids) due to tearing instability82–86,164,165 or

collapse of the reconnection exhaust.87 These magnetic islands tend to
contract due to magnetic tension force, and they merge to form larger
islands. Meanwhile, secondary current sheets are expected to form
between the plasmoids, and new plasmoids can further develop in the
new current sheets. This can repeatedly happen that gives rise to a
hierarchical, fractal-like plasmoid structure.82,88–90 This fractal struc-
ture enables particles to gain energy at multiple sites in a reconnection
region, such as the contracting magnetic islands21,43,44 and island
merging regions.57,91–93 These acceleration regions have been identi-
fied in kinetic simulations by tracking particle trajectories,21,52,60,91

which include detailed information (e.g., position, velocity, and electric
and magnetic fields) to characterize the acceleration history. Figure
1(a) shows the trajectory of an electron being energized in three con-
tracting magnetic islands in a 2D particle-in-cell (PIC) simulation.60

By carefully analyzing many such trajectories, we could differentiate
the roles of these different acceleration regions. The trajectories have
revealed that the parallel electric field near the reconnection X-line is
not enough to accelerate particles to high energies but may provide an
injection mechanism for further acceleration.54,94,95 High-energy par-
ticles are mostly accelerated in contracting or merging islands, and the
island-merging regions seem to be the most efficient in accelerating
electrons to the highest energy.91,93,96 Because of the multiple phases
of accelerations, particles can be accelerated from thermal energy to
nonthermal energies by reconnection without requiring external injec-
tion mechanisms like a X-point acceleration.54,95 These findings show
that particle trajectories can help illustrate the acceleration processes.
However, since one can only carefully analyze a small number of
them, the statistical information on particle acceleration may be buried
in the billions of other particles.

B. Fermi mechanism in reconnection

Although the reconnection region is complex with multiple accel-
eration regions and involves kinetic physics, the underlying particle
acceleration mechanism turns out to be quite general. The Fermi
mechanism has been proposed and demonstrated to be the dominant
process for high-energy particle acceleration during reconnec-
tion.21,58,59 Particles could gain energy through the Fermi mechanism
when bouncing off the Alfv�enic reconnection outflow driven by con-
tracting magnetic field lines [Fig. 1(d)]. The net energy gain due to one
bounce is De ¼ 2mðvvA þ v2AÞ, where v is the initial particle speed,
and vA is the Alfv�en speed. Assuming the interaction takes about
Dt ¼ 2L=v (L is the characteristic length scale, e.g., the typical island
diameter), the acceleration rate a � De=eDt � 2vA=L if v� vA,
which is independent of particle energy, as predicted by the Fermi
mechanism. In the nonrelativistic regime, one bounce is usually not
enough to accelerate particles to high energies, especially for electrons
(which usually have v� vA). To gain more energy, particles need to
bounce multiple times off the flows. The multi-scale structures in a
reconnection layer enable this scenario throughout the reconnection
layer. Particles trapped in magnetic islands will continuously gain
energy through bouncing off the flow driven by the contracting mag-
netic field lines21 [Fig. 1(e)] and merging magnetic islands57,91 [Fig.
1(f)]. Recent findings have also shown that particles could interact
with a single reconnection outflow multiple times to gain energies
when trapped near the reconnection X-line by a parallel electric poten-
tial or the magnetic bottle80 [Fig. 1(g)]. Alternatively, particles may
experience pitch-angle scattering by self-generated turbulence or
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fluctuations in reconnection and bounce multiple times within a single
reconnection exhaust.66,70

When particles are well magnetized, the acceleration processes
during reconnection can be well quantified by three closely linked mod-
els.43,44 The first one is based on the conservation of the first and second
adiabatic invariants, i.e., magnetic moment l ¼ mv2?=2B and parallel
actionm

Ð
vkdl, where v? and vk are velocities perpendicular and paral-

lel to the local magnetic field, respectively. When magnetic islands con-
tract or merge, the magnetic field lines tend to shorten,21,43 increasing
vk. Depending on whether the island area is conserved when islands
contract, the magnetic field could get stronger or weaker. If the island
area is conserved (circularization or incompressible case), the magnetic
field and v? will decrease.21,57,97,98 If the island area shrinks (compress-
ible case), the increasing magnetic field will lead to an increase in v?. In
contrast, the magnetic field and v? tend to decrease when two islands
merge.43,57 Analytical models based on the conservation of these two
adiabatic invariants have shown the formation of power-law energy
spectra in a “sea” of magnetic islands.43,57,99,100

The second model is based on particle guiding-center motions.
Particle trajectories have shown that particles tend to drift in the out-
of-plane direction [e.g., Fig. 1(c)] when they gain energy [e.g., Fig.
1(b)], suggesting that particle acceleration is associated with particle
guiding-center drift motions, which include the parallel guiding-center
velocity, E � B drift vE , grad-B drift, inertial drift, parallel drift, and
polarization drift,44,101–103

hvgi/ ¼ vkbþ vE þ
M
qs

B�rB
B2

þ
msvk
qsB

b� db
dt
þM

qs
ðr � bÞk

þ ms

qsB
b� dvE

dt
; (1)

where h…i/ indicates gyrophase average, d=dt � @=@t þ ðvkb
þvEÞ � r, and M � msðv? � vEÞ2=2B is particle magnetic moment
in the plasma frame where vE ¼ 0. The inertial drift (the fourth term
on the right) includes the curvature drift ðmsv2k=qsBÞb� j, where
j ¼ b � rb is the magnetic curvature. In the guiding-center approxi-
mation, a single particle gains energy at a rate,

h_ei/ ¼ qsE � hvgi/ þM
@B
@t
; (2)

where the second term on the right is due to the conservation of the
magnetic moment (betatron acceleration) and tends to be negative as
the magnetic energy is released (@B=@t < 0) in reconnection. Among
the acceleration processes, the term associated with particle curvature
drift is proportional to the particle parallel kinetic energy and is the
Fermi mechanism in reconnection.21 Since the curvature drift is pro-
portional to msv2k (�msv2=3 for an isotropic particle distribution), the

resulting acceleration rate h_ei/=e � vE � j is independent of particle
energy. To compare the energization with kinetic simulations, we often
integrate h_ei/ over electrons or ions to get the fluid energization
terms,58–60,81,104 obtaining js � E ¼ jsk � Ek þ js? � E?, where js is total
current density, of which the perpendicular component is (see
Appendix B in Li et al.105 for derivation)

js? ¼ psk
B� ðB � rÞB

B4
þ ps?

B�rB
B3

� r� ps?B
B2

� �
?
þ qsvE

� nsms
dvs
dt
� B
B2
; (3)

where psk and ps? are parallel and perpendicular pressures to the local
magnetic field, respectively, qs is the charge density, ns is particle num-
ber density, ms is particle mass, vs is the species flow velocity, and
d=dt � @t þ vs � r. The terms on the right show that the fluid energi-
zation is then associated with curvature drift, gradient drift, magnetiza-
tion, and flow inertia. vE does not contribute to the energization
because vE � E ¼ 0. Figure 2 on the left shows that the energization
associated with curvature drift is dominant in the weak guide field
limit. As the guide field Bg increases, js? � E? will be suppressed as the
curvature of the magnetic field jjj becomes smaller. Instead, the ener-
gization due to the parallel electric field jsk � Ek will dominate when
Bg > B0,

58,60 where B0 is the strength of the reconnection magnetic
field.

The third model attempts to describe the energization in terms of
flow compression and shear.44,96,97,106 The former is the leading

FIG. 1. Left: an electron trajectory showing the acceleration processes are associated with particle guiding-centering drift motions. (a) The trajectory in the simulation x–z plane.
The background is the out-of-plane electric field Ey at three time slices. The green crosses indicate the positions of this electron at the three time slices. (b) The electron kinetic
energy c� 1 (in the unit of mec2) evolving with its x-position. (c) The electron’s x-position vs its y-position. Reproduced with permission from Li et al., Astrophys. J. 843, 21
(2017). Copyright 2017 Institute of Physics (IOP). Right: Fermi mechanisms in reconnection. Blue curves indicate the magnetic field lines. Green curves indicate particle trajec-
tories. v is the particle velocity when entering the acceleration region. vA is the Alfv�enic outflow velocity. (d) A single bounce off the reconnection outflow. Multiple bounces in
(e) a contracting magnetic island, (f) island merging regions, and (g) a single reconnection exhaust.
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acceleration mechanism in energetic particle transport theory and dif-
fusive shock acceleration.107–109 While the reconnection layer is
assumed incompressible traditionally,110,111 recent MHD simulations
have shown that compression effects are important in reconnection in
low-b and weak-Bg regime.112,113 Kinetic models based on adiabatic
invariants for reconnection acceleration have pointed out that com-
pression could also be important for particle acceleration during
reconnection.43,44,114 Drury115 presented a reconnection acceleration
model showing that the compression ratio between the outflow and
inflow plasmas determines the power-law spectral index of
reconnection-accelerated particles. These findings appear to be in con-
tradiction with some previous theories that assume the reconnection
layer is incompressible and compression acceleration is not in
action.56,57 It turns out that the energization associated with guiding-
center drift motions can be reorganized to

js? � E? ¼r � ðps?vEÞ � psr � vE � ðpsk � ps?Þbibjrij

þ nsms
dvs
dt
� vE; (4)

where rij ¼ 0:5ð@ivEj þ @jvEi � ð2r � vEdijÞ=3Þ is the shear tensor of
vE flow, and ps � ðpsk þ 2ps?Þ=3 is the effective scalar pressure. The
second term on the right is due to flow compression and / the scalar
pressure. The third term on the right is due to flow shear and / the
pressure anisotropy. When the particle distribution is nearly isotropic,
the flow shear is ineffective in energizing plasma but can provide a
second-order acceleration term for high-energy particles,116 such as
cosmic rays. Using kinetic simulations, Li et al.106 showed that the
flow compression and shear effects capture the primary plasma energi-
zation (Fig. 2, right) and particle acceleration processes in reconnec-
tion. Compression energization dominates reconnection energization
but becomes comparable with shear energization when there is a mod-
erate guide field (Bg=B0 � 0:5). As Bg increases, the plasma becomes
less compressible because the guide field has to be also compressed

when the plasma is being compressed. As a result, the compression
energization becomes less efficient as Bg increases. On the other hand,
the pressure anisotropy tends to increases with the guide field.106,117

As a result, the shear energization (proportional to the pressure anisot-
ropy) decreases slower with the guide field than compression energiza-
tion. Overall, the joint energization due to flow compression and shear
decreases with the guide field, providing an alternative explanation
why the plasma energization is less efficient as Bg increases. These
results suggest that one may study particle acceleration in a large-scale
solar flare reconnection site using the transport theory.

III. PARTICLE SPATIAL TRANSPORT
A. Artificial confinement in 2D simulations

Most kinetic simulations of reconnection were carried out in a
2D geometry due to computational constraints. In 2D reconnection,
high-energy particles are mostly confined in magnetic islands due to
the restricted particle motion across the magnetic field lines.118–120

Since particles are usually well magnetized and coupled with the field
lines except in the diffusion regions, onion-like particle distributions
form in the islands.60 Particles entering the reconnection region earlier
stay in an island’s central region, while those entering later will be in
the outer region [Fig. 3(a)]. Particles are adiabatically compressed and
develop thermal-like energy distributions in each layer [Fig. 3(b)].
Those in the central region experience compression longer and thus
have a higher temperature than that in the outer layers. Although
some particles can still be accelerated to hundreds of times initial
thermal energy, the particle distribution in the reconnection region is
actually the superposition of these thermal-like distributions.60

Furthermore, due to the confinement, high-energy particles cannot
access the regions where the acceleration is most active [Figs. 3(c) and
3(d)]. The newly reconnected field lines in those regions are strongly
bent and drive strong outflow (�vE) well aligned with the magnetic
curvature j. Lower-energy particles accessing these regions will then

FIG. 2. Time evolution of different fluid energization terms over the entire simulation box. Left: the energization associated with guiding-center drift motions for (a) electrons
and (b) ions in a simulation with Bg ¼ 0. Reproduced with permission from Li et al., Astrophys. J. 843, 21 (2017). Copyright 2017 Institute of Physics (IOP). Besides the listed
three terms, the sum also includes the energization associated with polarization drift. Ke and Ki are particle kinetic energies. Right: the energization associated with flow com-
pression and shear. Reproduced with permission from Li et al., Astrophys. J. 855, 80 (2018). Copyright 2018 Institute of Physics (IOP). je�agy � vE is the energization associ-
ated with agyrotropic pressure tensor. (c) A simulation without a guide field. (d) A simulation with Bg=B0 ¼ 0:5.
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have a higher acceleration rate associated with curvature drift vE � j
than high-energy particles confined in the central region of magnetic
islands. One may expect that merging islands will break the confine-
ment and drive stronger particle acceleration and pitch-angle scatter-
ing through forming multiple X-lines. However, to access particles in a
large island’s central region, this island has to merge with one contain-
ing more magnetic flux, which will become less likely as fewer islands
grow to large sizes.

B. Fast spatial transport in 3D reconnection

Including 3D physics will help resolve these issues because mag-
netic flux ropes (the counterpart of magnetic islands in 3D) could be
broken apart or even destroyed by plasma instabilities,63,64,71,92,121

such as oblique tearing and kink instabilities. As most of these instabil-
ities require the third dimension, they are artificially suppressed in 2D
simulations. The nonlinear growth and interaction of these instabilities
will lead to a fragmented current layer filled with secondary flux ropes
and current sheets [Fig. 4(a)]. Magnetic field lines passing these
regions will exponentially separate from each other and thus become
chaotic.67–70,122–124 For example, the neighboring field lines in Fig.
4(a) quickly diverge from each other and access a broad region within

just one crossing of the reconnection layer. The chaotic field lines
enable different regions (e.g., flux ropes and reconnection exhausts) to
be magnetically connected, allowing particles to access broader
regions. The mixing of particles with different energies helps to
develop truly nonthermal distributions locally (see Sec. IV for a discus-
sion). Additionally, a 3D reconnection layer produces fluctuations that
are likely to undergo both forward and inverse cascade,63,123 resulting
in broadband turbulent fluctuations.71,73,122,123 Figure 4(b) shows that
the magnetic power spectrum resembles a power-law distribution with
a spectral index of about �2.7, consistent with that for reconnection-
mediated turbulence in the collisionless regime.125 Other 3D simula-
tions (either MHD or kinetic) have observed similar magnetic power
spectra53,71,122 steeper than the classical Kolmogorov spectrum with a
spectral index�5/3. If the energetic particles resonate with waves with
wavelengths near the kinetic scales, such a steep spectrum will result in
particle diffusion coefficients different from the quasi-linear theory
assuming a Kolmogorov-like magnetic power spectrum.126,127

High-energy particles in a 3D reconnection layer will resonate
with the turbulent fluctuations and experience pitch-angle scatter-
ing,126 preventing them from being confined in a flux rope for a long
time. The snapshots of a test-particle simulation shown in Figs. 5(a)
and 5(b) show how particles are quickly transported along the chaotic

FIG. 3. Artificial particle trapping in 2D simulations. (a) The contour of the out-of-plane component of the vector potential Ay in a run with be ¼ 0:02. The region between the
black lines is the reconnection layer. (b) Electron energy spectra in these layers. The black dashed line shows the spectrum inside the reconnection layer bounded by the black
lines in panel (a). The dashed line is the fitted Maxwellian for the spectrum in the innermost region. [(a) and (b)]: Reproduced with permission from Li et al., Astrophys. J. 843,
21 (2017). Copyright 2017 Institute of Physics (IOP). (c) The spatial distribution of high-energy electrons in the 2D simulation. (d) The acceleration rate associated with curva-
ture drift vE � j in a 2D simulation. Note that we multiply the rate by 100 just to make the color bar range from �1 to 1. (e) A slice of high-energy electron distribution in a 3D
simulation. The arrow points out some electrons in the large flux rope that do not actively participate in the acceleration. (f) The corresponding acceleration rate associated
with curvature drift in the 3D simulation. The black contour indicates the boundary of the major acceleration regions. [(c)–(f)]: Reproduced with permission from Li et al.,
Astrophys. J. 884, 118 (2019). Copyright 2019 Institute of Physics (IOP).
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magnetic field lines in a turbulent reconnection layer. Instead of being
trapped in the large flux rope, the electrons initially close to each other
quickly fill the whole simulation domain after about two Alfv�en cross-
ing times.

The fast particle transport in 3D enables high-energy particles to
access the regions where the magnetic energy is actively converted into
plasma kinetic energy. Figure 3(e) shows the distribution of high-
energy electrons in the 3D simulation shown in Fig. 4, and Fig. 3(f)
shows the corresponding acceleration rate associated with curvature
drift acceleration. In contrast to the 2D results [Figs. 3(c) and 3(d)],
high-energy electrons can access regions and have a large acceleration
rate associated with curvature drift �vE � j. Thus, it is reasonable to
expect that high-energy particle acceleration will become more effi-
cient in 3D than in 2D. Figures 5(c) and 5(d) show one electron trajec-
tory traced in the 3D kinetic simulation. The electron gets three Fermi

bounces (1–3) early in the simulation. It is then trapped in the large
flux rope, and its acceleration gets slower and slower. In a 2D simula-
tion, the electron would be confined in the large magnetic island until
the island merges with other islands. However, in the 3D simulations,
the electron can easily escape due to the chaotic magnetic field lines
and self-generated turbulence. The trajectory shows it gets out of the
flux ropes and experiences two more Fermi bounces in other regions
[indicated by 4 and 5 in Figs. 5(c) and 5(d)]. These results show that
the fast spatial transport due to chaotic field lines and self-generated
turbulence helps particle acceleration in 3D simulations.

IV. THE FORMATION OF POWER-LAW SPECTRA
A. Formation of power-law spectra in 3D

While plasma dynamics and reconnection rate have been the
focus of most 3D simulations of magnetic reconnection,64,71,72 a few

FIG. 4. Turbulence and chaotic magnetic field lines in the 3D simulation. (a) 3D reconnection layer showing an isosurface of the current density with jJj=J0 ¼ 0:3, and mag-
netic field lines starting from uniformly distributed points along a line of length 2di . The field lines are color-coded with their seed identification numbers (IDs). The local electron
energy spectra in the four white cubes of ð2:3diÞ3 will be shown in Fig. 6(b). (b) Magnetic power spectra at five time slices indicated by the crosses in the embedded plot. The
black dashed line indicates a power-law / k�2:7? . The inset also shows the time evolution of the magnetic energy eB for both 2D and 3D simulations. eB0 is the initial magnetic
energy. Reproduced with permission from Li et al., Astrophys. J. 884, 118 (2019). Copyright 2019 Institute of Physics (IOP).

FIG. 5. Fast particle transport leads to stronger particle acceleration in a 3D reconnection layer. Panels (a) and (b) are results from a test-particle simulation with the fields
from the 3D PIC simulation as background. The particles are uniformly distributed in a ball with a radius of de in the center of the flux rope [panel (a)]. The magnetic field lines
in green all pass through the ball. The red balls in (b) indicate their final positions. Panels [(c) and (d)] show on electron tracer trajectory in the 3D PIC simulation. (c) The tra-
jectory’s projection on the x–z plane. It is color-coded by its kinetic energy. The numbers 1–5 indicate five phases of acceleration. The arrow points out when the electron
escapes from being trapped in the large flux rope. (d) x-position vs the electron kinetic energy. Reproduced with permission from Li et al., Astrophys. J. 884, 118 (2019).
Copyright 2019 Institute of Physics (IOP).
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recent large-scale 3D kinetic simulations have been dedicated to study-
ing particle acceleration in 3D reconnection.53,66,67,70,124 In contrast to
the relativistic simulations showing similar particle energy spectra in
2D and 3D reconnection,51–53,128 nonrelativistic simulations have
shown stronger particle acceleration in 3D than in 2D because of the
fast transport.66,67,70 Figure 6(a) shows the time evolution of the
electron energy spectrum in a 3D kinetic simulation.70 The spec-
trum has a power-law tail / e�4, and it persists throughout the
nonlinear reconnection phase until saturation. This result provides
the first convincing evidence of forming the power-law energy
spectrum in 3D nonrelativistic reconnection. Comparing with 2D
reconnection, 3D reconnection accelerates electrons to higher
energies. The high-energy tail keeps growing in the 3D simulation.
In contrast, the maximum energy in the 2D simulation does not
change much, and the flux keeps piling up at lower energies, caus-
ing the spectrum to become softer as the simulation evolves. This
explains why the spectrum becomes very steep to the end of the 2D
simulation shown in Figs. 3(a) and 3(b). The fast particle transport
not only helps particle acceleration but also enhances particle mix-
ing. Figure 6(b) shows the local electron spectra at four different
locations have similar power-law tails instead of different thermal-
like distributions in 2D [Fig. 3(b)].

B. Power-law formation model

Before looking into the simulation data, let us briefly review the
formation of power-law spectra due to the Fermi mechanisms (see
Guo et al.129 for a more detailed review). In the standard
Fokker–Planck approach, the particle distribution evolves according to

@t f þ @eðaef Þ ¼ @2e ðDeef Þ �
f

sesc
þ finj

sinj
; (5)

where Dee is the energy diffusion coefficient, sesc is the escape time-
scale, finj is the injected particle distribution, and sinj is the particle
injection timescale. The acceleration rate aðeÞ � ðde=dtÞe�1 ¼ ð@te
þ@eDeeÞe�1 could describe first-order Fermi processes, direct accelera-
tion in the reconnection diffusion region, and a first-order drift in
energy @eDee associated with second-order Fermi mechanisms. Since
the first-order Fermi mechanism is thought to dominate particle

acceleration processes in magnetic reconnection,21 we can ignore the
energy diffusion Dee and the associated energy drift term (�@eDee) in
a. For particles with much higher energies than the injected particles,
their energy distribution resembles a power-law with a spectral
index,130

p ¼ 1þ 1
asesc

þ @ ln a
@ ln e

; (6)

which simplifies to 1þ ðasescÞ�1 when both rates are independent of
particle energy.52 The spectral index is for particles in the acceleration
region. For the energetic particles escaped from the acceleration
region, the flux f =sesc has a power-law index,

p0 ¼ 1þ 1
asesc

þ @ ln a
@ ln e

� @ ln aesc
@ ln e

; (7)

where aesc ¼ s�1esc is the escape rate. Both a and aesc (and thus sesc) can
be energy-dependent in general, but their energy-dependence should
be the same for p and p0 to be energy-independent. In reconnection, it
is often assumed that sesc � L=vA due to the advection loss by the
reconnection outflow,52,57,131 where L is the characteristic length scale
(e.g., the typical island diameter). Since sesc does not depend on parti-
cle energy, a needs to be independent of particle energy as well.
Therefore, to explain the formation of power-law spectra in nonrela-
tivistic reconnection, one needs to demonstrate that the acceleration
rate is indeed constant in the kinetic simulations. The model for
explaining power-law formation in relativistic reconnection has shown
that asinj should be> 1 to obtain an extended power-law spec-
trum,52,53,129 where sinj is particle injection timescale. This result indi-
cates that simulations sustaining large a and long sinj will help power-
law formation. Since the acceleration rate associated with the Fermi
mechanism is �vE � j, a larger Alfv�en speed or magnetic curvature
(or compression, see Sec. II B) will lead to stronger particle acceleration
and the potential formation of power-law energy spectra in kinetic
simulations. When the thermal speed is fixed, a larger Alfv�en speed
gives a lower plasma b. As the magnetic curvature decreases with the
guide field, a larger magnetic curvature means a lower guide field.
Thus, boosting a by performing simulations in low-b and weak guide-
field regimes will help obtain power-law spectra in a finite simulation
time.70

FIG. 6. (a) Time evolution of the global electron energy spectrum in the 3D simulation with the inset comparing with the corresponding 2D simulation at three time slices. The black
solid line indicates a power-law distribution with a spectral index p¼ 4. We normalize e by the initial thermal energy eth � 0:015mec2. (b) Electron energy spectra for electrons in
the four local boxes shown in Fig. 4(a) at tXci ¼ 150. Reproduced with permission from Li et al., Astrophys. J. 884, 118 (2019). Copyright 2019 Institute of Physics (IOP).
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C. Acceleration and escaped rates in reconnection

Since kinetic simulations include self-consistent electric and mag-
netic fields at all particle positions, we can evaluate the energy-
dependent particle acceleration rate aðeÞ � h_e=ei, where h…i is the
ensemble average for particles in different energy bands, where
_e ¼ qv � E, and v is the particle velocity. We can also decompose the
velocity into different guiding-center motions and calculate the accel-
eration rates associated with different acceleration mechanisms. Figure
7(a) shows the total and decomposed acceleration rates for electrons
in a 3D simulation. The primary acceleration mechanism is a Fermi-
type mechanism associated with particle curvature drift, the same as
2D results.52,58,59 Both parallel electric field and grad-B drift contribute
much less than the curvature drift and even decelerate high-energy
electrons. More importantly, since particles with different energies can
access to the same acceleration regions due to the fast spatial transport
and mixing, the total acceleration rate is nearly a constant in the 3D
simulation. In contrast, due to the artificial confinement of high-
energy electrons in 2D simulations, the electron acceleration rate
sharply decreases with particle energy [Fig. 7(b)] and even becomes
negative for high-energy electrons later in the simulations. The energy
dependence explains quantitatively why the electron energy spectrum
keeps getting steeper in the 2D simulations [Fig. 6(a)].

Particle escape processes are often not considered because most
kinetic simulations have periodic or closed boundary conditions. A
common assumption is that sesc !1 in these simulations because
particles cannot leave the simulation box. However, if sesc !1, the
power-law spectral index p ¼ 1þ ðasescÞ�1 will approach 1, which
cannot explain the simulation results (Fig. 6). In reconnection, as the
primary acceleration regions are only a fraction of the reconnection
layer [Figs. 3(d) and 3(f)], effective escape is still possible when par-
ticles are out of these regions and do not actively participate in the
acceleration processes [Fig. 3(e)]. Particles in large inactive magnetic
structures (islands or flux ropes) are slowly accelerated and behave
similarly to the escaped particles. Although some particles can be fur-
ther accelerated when they are scattered out of these structures by tur-
bulence,66,70 not all particles can be scattered and escape from the flux
rope at the same time. Those escaped particles could be further accel-
erated when these structures merge, but the timescale between merg-
ing can be as long as the dynamical timescale. Thus, these large

inactive magnetic structures serve as escape regions. By separating the
acceleration and escape regions [Fig. 3(f)], we can calculate the acceler-
ation rate of the particles in the acceleration regions and their escape
rate from the acceleration regions. The power-law spectrum is a
dynamical balance between particle acceleration and escape, as pre-
dicted by Eq. (6). Figure 8 shows that s�1esc � 3a early in the simulation,
and the resulted power-law index p ¼ 1þ ðasescÞ�1 � 4 is similar to
the simulation results. However, the rates deviate from each other after
the reconnection outflows collide at the boundary at tXci � 150. The
acceleration rate sharply decreases after that, revealing why the power-
law is short in the 3D simulation. Kinetic simulations with larger
domains will likely sustain a more extended power-law spectrum, and

FIG. 7. Energy-dependent electron acceleration rate a: (a) the contributions to a by the acceleration associated with curvature drift, gradient drift, and the parallel electric field
in a 3D simulation. (b) a for the 2D (orange) and 3D (blue) simulations at two time slices. Reproduced with permission from Li et al., Astrophys. J. 884, 118 (2019). Copyright
2019 Institute of Physics (IOP).

FIG. 8. An estimate of the power-law index by evaluating the acceleration rate a
and the escape rate 1=sesc for high-energy electrons (e > 40eth) in the major
acceleration region, where jvE � jj is larger than a threshold, as indicated in Fig.
3(f). (a) Time evolution of 3a and 1=sesc. The embedded plot compares the distribu-
tions of the regions with negative and positive vE � j at tXci ¼ 100. The vertical
dashed line indicates the chosen threshold 0.001 for jvE � jj. Regions with
jvE � jj < 0:001 do not contribute to the high-energy particle energization because
positive vE � j balance with negative values. Reproduced with permission from Li
et al., Astrophys. J. 884, 118 (2019). Copyright 2019 Institute of Physics (IOP).
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simulations that can bypass the kinetic scales will also help the forma-
tion of extended power-law spectra.113,131

V. OUTLOOKS

Recent kinetic simulations have made outstanding progress in
understanding particle acceleration and power-law formation during
magnetic reconnection. However, it is still incredibly challenging to
address particle acceleration at global scales that are usually much
larger than the kinetic scales. For example, Fig. 9 shows that the flare
scale is �5 orders of magnitude larger than kinetic simulations. The
entire simulation domain of the largest PIC simulation is even smaller
than the finest grid-scale of state-of-the-art MHD simulations, not to
mention the observation scales. The large-scale separation in typical
space and solar plasmas (e.g., solar flares) prohibits using a single sim-
ulation to study particle acceleration and transport in a large-scale
reconnection layer. To explain the observations, we need to incorpo-
rate the large-scale acceleration mechanisms learned from kinetic sim-
ulations (e.g., compression) into macroscopic energetic particle
transport models to study particle acceleration and transport at
observable scales.113,131 Here, we discuss several issues to address for
tackling the global-scale acceleration problem in the future.

A. Plasma parameters and simulation setup

Although kinetic simulations have shown evidence of the power-
law formation in the nonrelativistic reconnection,70 we have just
started to explore the broad plasma parameter space (e.g., plasma b
and guide field). While 3D simulations in the low-b and weak guide-
field regimes have shown the power-law formation,70 the results are
only suitable for explaining power-law formation in solar flares and
Earth’s magnetotail. They are not proper for studying reconnection
acceleration in the solar wind, where the plasma b is considerably
higher. Earlier studies have shown no evidence of substantial nonther-
mal particle acceleration in the reconnection exhausts observed in the
solar wind.135 However, recent studies have revived this topic and
shown that reconnection-associated processes (e.g., contracting and
merging magnetic flux ropes) can accelerate particles to develop non-
thermal power-law energy spectra in the solar wind.39,41,42 While ana-
lytical theories have shown that it is possible to develop power-law
energy spectra in a sea of contracting and merging flux ropes even in
high-b plasmas,43,44,57 numerical simulations are yet to demonstrate
power-law energy spectra can indeed form in such plasmas. To test
reconnection acceleration in the high-b plasmas, performing simula-
tions in these regimes and making sinj as large as possible is essential.
Since sinj is limited by the reconnection duration and constrained by
the boundary conditions (e.g., periodic boundaries), simulations with
larger domains and open-boundary conditions will help. Considering

the requirements of 3D simulations to achieve fast particle trans-
port,66,67,70 studying power-law formation in high-b regimes poses a
challenge. For reconnection with a stronger guide field, it appears that
the spectrum will become softer because the acceleration rate decreases
with the guide field.58,60,131 Whether this explanation is complete
remains unclear due to the lack of studies on the escape mechanisms
during reconnection and how the escape changes with different guide
field.

Constrained by the computational cost, most kinetic simulations
used reduced proton-to-electron mass ratio mi=me (e.g., 25) and ratio
between the light speed and Alfv�en speed. Such setup essentially
reduces the scale-separation between electron and proton scales.
While the reconnection rate is insensitive to the mass ratio,105 particle
acceleration mechanisms and power-law formation could be modified.
For example, using a set of 2D simulations, Li et al.105 showed that a
reduced mass ratio leads to a stronger electron acceleration by artifi-
cially enhancing the acceleration rate associated with curvature drift. If
the mass-ratio dependence holds in 3D, the power-law formation pro-
cesses and the power-law spectral index could deviate from previous
results.70 Therefore, we should be cautious when using the results
from kinetic simulations to interpret the observations.

B. Turbulence properties and particle transport

Despite the encouraging results from 3D kinetic simulations sug-
gesting that fast particle transport is essential for the power-law forma-
tion in nonrelativistic reconnection,70 no simulations have been
dedicated to studying particle transport in the turbulent reconnection
layer. To understand particle transport, it is important to quantify the
turbulence properties relevant to particle acceleration first, including
turbulence amplitude, power spectrum, anisotropy, compressibility,
and correlation length.136 The turbulence amplitude dB2=B2

0 is the
ratio of the fluctuating magnetic energy and the energy of the mean
magnetic field. It represents how strong the magnetic field fluctuates
and determines how strongly particles are scattered and whether
second-order particle acceleration is significant.28 The turbulence
amplitude might decrease with the guide field because the guide field
is not dissipated in magnetic reconnection and because the magnetic
energy conversion becomes less efficient as the plasma becomes less
compressible when the guide field increases.105,106,137 The other turbu-
lence properties are subjects of intense debate.71–73,125,138–143 In the
MHD regime, there is no conclusion on whether these results are con-
sistent with classical Goldreich–Sridhar theory for anisotropic turbu-
lence in a homogeneous plasma permeated by a uniform magnetic
field.144–146 Compared with the MHD studies, studying turbulence
properties in 3D kinetic simulations is even more challenging because
the computation cannot cover a similar dynamical range as in MHD
simulations due to the multi-scale nature. Although the turbulence
spectrum is routinely shown in recent kinetic simulations,70,122,147 a
good understanding of the anisotropy level, compressibility, and tur-
bulence correlation length still needs more studies.

If a much larger PIC simulation is accessible, the particle diffu-
sion coefficients can then be evaluated using these turbulence proper-
ties according to particle transport theories.126,127,148–150 As a
complement to this analysis, the diffusion coefficients can also be eval-
uated following the Taylor–Green–Kubo (TGK) forms using test par-
ticles in the 3D kinetic simulations. The comparison will tell us
whether current transport theories can explain particle transport in

FIG. 9. The large-scale separation in solar flares. di is the ion inertial length. The
scale for the largest PIC is based on 2D simulations (�103di )58,59 and reduced
plasma parameters (e.g., the mass ratio and light speed). Constrained by the com-
putational cost, 3D simulations are even smaller than those 2D simulations.70 The
MHD grid scale is estimated based on some state-of-the-art MHD simulations of
solar flares.132–134 The observation resolution depends on the emission band.
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reconnection-driven turbulence or new kinds of transport models are
required.43,44,97,100 The results will guide the efforts in modeling parti-
cle acceleration and transport in large-scale reconnection layers, for
example, by solving Parker’s transport equation.113

C. Ion acceleration

Ion acceleration can be as efficient as electron acceleration during
reconnection. For example, solar flare observations have shown well-
correlated electron-generated hard x-ray flux and ion-generated gamma-
ray flux,151 suggesting a similar acceleration mechanism for both elec-
trons and ions. Also, heavy ions (especially Fe/O) often show substantial
enhancement from their coronal abundance during solar flares.152

Compared to electron acceleration, ion acceleration associated with mag-
netic reconnection is much less studied, especially in kinetic simulations.
Although ions can reach a few thousands of times of the initial thermal
energy,60,105 the simulation domains are usually too small (�100 ion
kinetic scales) for ions to have enough dynamical scale for developing
power-law energy distributions. To study power-law formation for ions,
hybrid kinetic simulations (kinetic ions and fluid electrons)153,154 that do
not resolve the electron kinetic scales are a better choice. The simulation
box can be 5–10 times larger than the fully kinetic simulations, providing
enough dynamical scales for ion acceleration.

To explain heavy-ion enhancement in flares, while previous theo-
ries mostly rely on wave-particle resonance in reconnection-driven
turbulence,27,155 Drake et al.156 proposed a novel mechanism by mag-
netic reconnection. When there is a finite guide field, the ions can be
energized in a pickup process157 as they enter reconnection exhaust
regions, and the heating of heavy ions (with low Q/M) is more efficient
than protons. Although fully kinetic simulations have demonstrated
the mechanisms to be effective,158–160 earlier works have been focused
on ion heating instead of the acceleration of suprathermal ions and the
formation of power-law spectra.

D. Large-scale acceleration models

Recently, significant efforts have been made in understanding
particle acceleration in magnetic reconnection through macroscopic
kinetic transport theories that incorporate the acceleration and
transport processes learned from the fully kinetic simula-
tions.44,57,113,115,136,161 Inspired by these results, Li et al.113 have studied
compression particle acceleration in magnetic reconnection by solving
the Parker (diffusion–advection) transport equation using velocity and
magnetic fields from 2D MHD simulations of a low-b reconnection
layer. The compressible reconnection layer can give significant particle
acceleration, leading to power-law particle energy distributions. These
results show that one can use transport theories to study particle accel-
eration in a large-scale flare region. To improve the model, we need to
incorporate more acceleration terms (e.g., flow shear and second-
order acceleration) into the transport model and study whether they
are essential for particle acceleration at large scales. In addition, the dif-
fusion coefficients evaluated based on the turbulence properties will
also help improve modeling particle transport in large-scale reconnec-
tion layers.

One potential limitation of the transport models (see le Roux
et al.97 for an exception) is that energetic particles do not feedback to
the background plasma. Solar flare observations indicate that magnetic
reconnection can accelerate over 10% of the entire electron population

(more than 1036 electrons) in the flare region into nonthermal distri-
butions.18–20,162 These energetic electrons thus contain a significant
amount of energy that can affect the plasma dynamics. Consequently,
the energetic particles’ feedback to the plasma might be crucial for
evolving the reconnection layer and associated particle acceleration.
Recent results by the kglobal model,131,161,163 which evolves the
guiding-center motions of electrons and includes the feedback to the
MHD fluids, have shown the formation of power-law energy spectra
in macroscale reconnection systems.131 The power-law spectral indices
are softer than the results in similar models but without feedback46,47

and are similar to solar flare observations. Interestingly, these power-
law spectra and their dependence on the guide field are similar to those
obtained by solving Parker’s transport equation.113 It suggests that the
transport model, which does not feedback to the background plasmas
but includes transport effects, is still very valuable for studying electron
acceleration. To reveal the potential connection between these two
approaches will require additional studies.

VI. SUMMARY

More and more evidence suggests that magnetic reconnection
could be responsible for the nonthermal particle acceleration and power-
law energy particle energy spectra observed in space and solar plasmas.
Motivated by the observations, many studies (either analytical or numer-
ical) have been focused on understanding how particles are accelerated
in magnetic reconnection. We summarize the recent progress in particle
acceleration mechanisms and spatial transport in the 3D reconnection
and their roles in forming the power-law energy spectrum.

We reviewed how the multi-scale structure developed in a recon-
nection layer enables reconnection to be a natural site for accelerating
particles from thermal to nonthermal energies. In 2D, the contracting
magnetic islands and regions between merging magnetic islands are
the most important for accelerating high-energy particles. The domi-
nant particle acceleration mechanism has been proposed and demon-
strated to be the Fermi mechanism using kinetic simulations. We
summarized the three closely linked models for studying the Fermi
mechanism. One is based on the two adiabatic invariants of magnetic
moment and the parallel action and has become the foundation of
many energetic particle models. The second one is based on individual
particle’s guiding-center drift motions and has revealed the energiza-
tion associated with curvature drift as the dominant mechanism for
high-energy particle acceleration. The third one is based on flow com-
pression and shear and is equivalent to the other two models. It reveals
the flow compression is critical for high-energy particle acceleration
during reconnection and links reconnection acceleration with the clas-
sical energetic particle transport theories.

Although 2D studies have advanced our understanding of parti-
cle acceleration associated with reconnection, they are limited in
studying nonthermal particle acceleration and power-law formation
due to the artificial trapping of energetic particles. We reviewed recent
progress on 3D physics that are relevant to particle acceleration and
transport in reconnection. Both self-generated turbulence and chaotic
magnetic field lines in a 3D reconnection layer can prevent particles
from being trapped in local regions and enhance the spatial transport
of energetic electrons. Consequently, energetic particles can access
broader acceleration regions, gain more energy, and efficiently mix
with other particles. The resulted particle energy distributions resem-
ble power-laws globally and locally. We summarized a model for
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explaining the power-law formation in 3D based on the Fermi mecha-
nism. The fast spatial transport enables particles with different energies
to access the same acceleration regions, leading to the energy-
independent acceleration rate, as often assumed for the Fermi mecha-
nism. The power-law energy spectrum is due to the dynamical balance
between particle acceleration and an effective escape caused by par-
ticles that do not actively participate in the acceleration.

We pointed out the challenges in addressing particle acceleration
and transport in large-scale reconnection layers (e.g., solar flares) and
several relevant issues to be addressed in the future to tackle the
global-scale acceleration problem. First, how do the simulation results
depend on the plasma parameters and simulation setup?We anticipate
that both plasma b and guide field will change the power-law forma-
tion processes. We should be cautious about using the simulation
results based on reduced physics constants (e.g., proton-to-electron
mass ratio and light speed) to interpret the observations. Second, what
are the turbulence properties relevant to particle acceleration and
transport in 3D reconnection? We anticipate that a good understand-
ing of the turbulence amplitude, spectrum, anisotropy level, compress-
ibility, and turbulence correlation length is critical in addressing this
problem. Third, how are ions are accelerated, and what are the resulted
ion energy distributions? We point out that the fully kinetic simula-
tions might be too small to study ion acceleration, and hybrid kinetic
simulations will be useful. One critical issue of studying ion accelera-
tion is how the acceleration depends on the charge-to-mass ratio. Last
but not least, what models do we have for studying particle accelera-
tion in a large-scale reconnection layer? We point out recent progress
in developing energetic particle transport models and including feed-
back from particles to plasma fluids for reconnection. Future studies
should include more acceleration physics and transport effects in these
models and perform cross-checking between different models.
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