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Abstract

In solar flares and other astrophysical systems, a major challenge for solving the particle acceleration problem
associated with magnetic reconnection is the enormous scale separation between kinetic scales and the observed
reconnection scale. Because of this, it has been difficult to draw any definite conclusions by just using kinetic
simulations. A particle acceleration model that solves the energetic particle transport equation can capture the main
acceleration physics found in kinetic simulations and thus provide a practical way to make observable predictions
and directly compare model results with observations. Here we study compression particle acceleration in magnetic
reconnection by solving the Parker (diffusion–advection) transport equation using velocity and magnetic fields
from two-dimensional magnetohydrodynamics (MHD) simulations of a low-β high-Lundquist-number
reconnection layer. We show that the compressible reconnection layer can give significant particle acceleration,
leading to the formation of power-law particle energy distributions. We analyze the acceleration rate and find that
the acceleration in the reconnection layer is a mixture of first- and second-order Fermi processes. When including a
guide field, we find that the spectrum becomes steeper and both the power-law cutoff energy and maximum particle
energy decrease as plasma becomes less compressible. This model produces a 2D particle distribution that one can
use to generate a radiation map and directly compare with solar flare observations. This provides a framework to
explain particle acceleration at large-scale astrophysical reconnection sites, such as solar flares.
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1. Introduction

Energy conversion and particle acceleration in strongly
magnetized plasmas are important processes that hold the
key for understanding many explosive solar and astrophysical
high-energy phenomena(Zweibel & Yamada 2009; Lin 2011).
Magnetic reconnection is a major mechanism that drives the
release of magnetic energy and nonthermal particle acceleration
by reorganizing the topology and connectivity of magnetic field
lines (Fu et al. 2013a, 2017). One of the best examples of
magnetic reconnection and the associated particle acceleration
is solar flares. Observations have suggested that magnetic
reconnection converts 10%–50% of the magnetic energy (up to
∼1033 erg) into plasma kinetic energy within 1–10 minutes.
During the process, a large amount of electrons in the flare
region (>1036 electrons) are accelerated into a power-law
energy spectrum f (ε)∝ε− s with a spectral index from s∼3
to more than s=9 with a median of about 5 (Lin & Hudson
1976; Krucker et al. 2010; Oka et al. 2013, 2015; Effenberger
et al. 2017). The acceleration of ions in a flare region can be as
efficient as that of electrons. This is suggested by RHESSIʼs
observation of the correlation between electron-generated
hard X-ray flux and ion-generated γ-ray flux(Shih et al.
2009). In situ solar energetic particle (SEP) observation has
also shown that the electron and ion spectra often resemble
power-law distributions(Mason et al. 2012). How such
efficient particle acceleration occurs over a large-scale
reconnection region remains an important unsolved problem
in reconnection study.

During solar flares, large-scale magnetic reconnection is in
the weakly collisional (high Lundquist number) regime and is
likely to have magnetic structures with a range of spatial
scales. One attractive scenario that emerged in the past decade
is the plasmoid-dominated reconnection, where a hierarchy of
plasmoids develop in a macroscopic reconnection layer
(Shibata & Tanuma 2001; Loureiro et al. 2007; Bhattacharjee
et al. 2009; Comisso et al. 2016) and naturally bring the
current sheet from the macroscopic scale to the kinetic
scale (Daughton et al. 2009; Ji & Daughton 2011). It is
therefore important to study particle acceleration in magnetic
reconnection using a multiscale approach. For magnetic
reconnection at kinetic scales, kinetic simulations provide a
first-principle description of particle acceleration, but the
domain size is limited due to the demanding computational
expense. The standard approach to study particle acceleration
on large scales is to solve the energetic particle transport
equation (e.g., Parker 1965; Zank et al. 2014), but this has not
been applied in reconnection study until recently (see below
for a more detailed discussion). Instead, test-particle simula-
tions have been widely used to study particle acceleration
during reconnection on large scales. Below, we review the
previous theories and numerical simulations on particle
acceleration in magnetic reconnection.
Particle-in-cell (PIC) kinetic simulation has been popular in

modeling particle acceleration during magnetic reconnection,
as it includes the full range of plasma physics. Previous kinetic
simulations have extensively studied several acceleration
mechanisms, such as direct acceleration close to the reconnec-
tion X-point (Hoshino et al. 2001; Drake et al. 2005; Fu
et al. 2006; Oka et al. 2010; Egedal et al. 2012, 2015; Wang
et al. 2016), Fermi-type acceleration in contracting magnetic
islands(Drake et al. 2006; Oka et al. 2010), acceleration
in island-merging regions (Oka et al. 2010; Liu et al. 2011;
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Drake et al. 2013; Nalewajko et al. 2015), and acceleration at
the reconnection front(Fu et al. 2011, 2012; Liu et al. 2017a,
2017b; Xu et al. 2018). By summing over the particle guiding-
center motions, several recent studies have identified curvature
drift along the motional electric field as the major particle
acceleration mechanism (Dahlin et al. 2014; Guo et al. 2014,
2015; Li et al. 2015, 2017) in the weak guide-field case.
However, because of the enormous scale separation between
kinetic scales (ion skin depth ∼10–100 m) and the scale of the
observed reconnection region (∼107 m), it has been difficult
to draw any definite conclusion and compare solar flare
observations with the modeling results. To overcome this major
difficulty and solve the particle acceleration problem in solar
flare reconnection, one has to come up with a description for
the acceleration of particles at a macroscopic fluid scale.

Test-particle simulations are widely used in studying
particle acceleration during solar flares. Both full particle
orbits and particle guiding-center motions have been calculated
in background electric and magnetic fields provided by MHD
simulations. Under the guiding-center approximation, one
can solve particle motions in realistic scales by removing the
high-frequency gyromotions. The test-particle method usually
generates hard power-law energy spectra (Onofri et al. 2006;
Gordovskyy et al. 2010a, 2010b; Zhou et al. 2015, 2016) that
can extend to tens of keV for electrons and tens of MeV for
protons but may be too hard to explain the observations
(power-law index for electrons 1<s<2). Acceleration due to
the parallel electric field is usually the dominant particle
acceleration mechanism found in the these simulations. This is
likely due to the large anomalous resistivity and coarse grids
used in these simulations, resulting in much broader current
layers and a much larger resistive electric field than that in real
systems. Furthermore, the large anomalous resistivity is not
supported by current 3D PIC simulations of reconnection layers
(Roytershteyn et al. 2012; Liu et al. 2013; Le et al. 2018). One
can avoid this problem by ignoring the parallel electric field
completely(Zhou et al. 2015; Birn et al. 2017), leading to
particle energy spectra that are close to solar flare observations.
But this method still does not take into account the effect of
wave–particle interaction that scatters particles and changes the
acceleration processes.

The standard approach to solve the large-scale particle
acceleration and transport problem is to use the energetic
particle transport theory, which has been widely used in
studying shock acceleration and cosmic-ray transport. The
primary acceleration mechanism is due to adiabatic compres-
sion and is included in the Parker transport equation (Parker
1965; Blandford & Eichler 1987). Various other acceleration
mechanisms (e.g., fluid shear and fluid acceleration) could also
be included in the transport theory (Earl et al. 1988; Zank
2014). It is worth noting that the acceleration due to curvature
and gradient drift that was found to be important in earlier
kinetic simulations has also been included in the transport
theory(Jones 1990; le Roux & Webb 2009). Several studies
have attempted to develop similar transport theories (or reduced
kinetic equations) for studying particle acceleration during
reconnection (Drake et al. 2006, 2013; Egedal et al. 2013;
Zank 2014; le Roux et al. 2015; Montag et al. 2017). These
studies include previously studied particle acceleration
mechanisms, such as the parallel reconnection electric field
and contracting and merging magnetic islands. While some of
the studies assume that the reconnection layer is incompressible

and only consider incompressible effects (e.g., Drake et al.
2006, 2013), other recent studies emphasized both compres-
sible and incompressible effects (Zank et al. 2014; le Roux
et al. 2015; Montag et al. 2017). Recently, for the first time, Li
et al. (2018) used fully kinetic simulations to show that
compression energization dominates the acceleration of high-
energy particles in reconnection with a weak guide field (<20%
of the reconnecting component), and the compression and shear
effects are comparable when the guide field is moderate (∼0.5
times the reconnecting magnetic field component). Meanwhile,
some recent MHD simulations also suggest that the reconnec-
tion layer is compressible, especially when the plasma β is low
and the guide field is weak(Birn et al. 2012; Provornikova
et al. 2016). These simulation results suggest that one may
study particle acceleration in a large-scale solar flare reconnec-
tion site using the transport theory.
Drury (2012) considered reconnection acceleration by

assuming the reconnection region as a black box with a certain
compression ratio r between the upstream and downstream
regions. He found that compression acceleration leads to a
power-law spectrum f (p)∝p−χ and the spectral index
depends on the compression ratio in a similar way as in
diffusive shock acceleration χ=−3r/(r−1). For nonrelati-
vistic particles, the spectral index s for energy spectrum f (ε) is
related to χ by s=(χ−1)/2. As discussed above, the
reconnection layer in the weakly collisional regime may have
magnetic structures in various scales. It is worthwhile to study
whether the power-law energy spectrum can still develop and
how the spectral features depend on the key plasma parameters
of the reconnection layer. The goal of this paper is to study
large-scale compression acceleration during magnetic recon-
nection in the plasmoid-dominated regime.
In this paper, we solve the Parker (diffusion–advection)

transport equation using the background velocity and
magnetic fields from MHD simulations of a low-β high-
Lundquist-number reconnection layer. We assume that
electrons and protons are already energetic and can interact
with the background magnetic fluctuation in the reconnection
region. In Section 2, we describe the MHD simulations and
stochastic integration method for solving the Parker transport
equation. In Section 3, we present our simulation results. We
show that particles are significantly accelerated by the
compression reconnection layer in the plasmoid-dominated
regime. The acceleration leads to the formation of a power-
law energy distribution for both electrons and protons. The
power-law index, cutoff energy, and maximum energy depend
on the guide-field strength and the diffusion model. This
model also produces a 2D particle distribution that one can
use to generate a radiation map and directly compare with
observations. This provides a framework to explain particle
acceleration at large-scale reconnection sites, such as solar
flares. In Section 4, we discuss the conclusions and
implications based on our simulation results.

2. Numerical Methods

2.1. MHD Simulations

We carry out simulations of magnetic reconnection using the
Athena MHD code(Stone et al. 2008). We use a third-order
piecewise parabolic reconstruction, the Harten–Lax–van Leer
discontinuities Riemann solver, the MUSCL-Hancock (VL)
integrator, and the constrained transport (CT) algorithm to
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ensure the divergence-free state of the magnetic field. The code
solves the resistive MHD equations
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energy density, B is the magnetic field, p is the gas pressure,
γ (=5/3) is the adiabatic index, j is the current density, and
η is the resistivity. Unless specified otherwise, we normalize
the simulations by L0=5000 km (the simulation box size is
104 km) and vA=1000 km s−1, which are the typical para-
meters of the reconnection site of a solar flare. We assume the
normalized magnetic field B0=50 G and the particle density is
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where ψ0 is the amplitude of the perturbation. Initially, the
total pressure (gas pressure + magnetic pressure) is uniform
in the simulation box. We choose ψ0=10−4 so that the

initial density variation is under 2.6%. The initial plasma
β=2p/B2≈0.1. We choose periodic boundary conditions
along both the x and y directions. We perform four simulations
with Bg=0, 0.2, 0.5, and 1.0. The initial plasma density
ρ0≈1.0, 1.04 , 1.25 , and 2 , so the resulting Alfvén speed
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0r= +( ) in the reconnection inflow region ≈1.0
for all four runs. Note that the Lundquist number in the
simulations is much smaller than the realistic number
calculated from the Coulomb collision. Previous numerical
simulations have shown that the reconnection rate becomes a
few percent of the Alfvén speed and independent of the
Lundquist number when S104 (e.g., Bhattacharjee et al.
2009; Huang & Bhattacharjee 2010).

2.2. Solving the Parker Transport Equation

We then solve Parker’s transport equation,
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well developed and has an isotropic power spectrum
P∼k−5/3, the resulting κP∼p4/3 when the particle gyrora-
dius is much smaller than the correlation length of turbulence.
In particular, we use the following expression for κP (Giacalone
& Jokipii 1999),
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where v is the particle speed, Lc is the turbulence correlation
length, Ω0 is the particle gyrofrequency, and B B2 2
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is the normalized wave variance of turbulence. The normal-
ization of the diffusion coefficient is then κ0=L0vA=5×
1016 cm2 s−1, and the normalization of time is t0=L0/vA=
5 s. We assume that the correlation length Lc is equal to
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a simulation box size/30≈333 km, which is the largest
eddy size in a reconnection-driven turbulence, as shown
by 3D MHD simulations of magnetic reconnection(Huang
& Bhattacharjee 2016). We assume the average magnetic
field B0=50 G and σ2=1. Then, 1.5 10 cm s14 2 1k = ´ -


for 10 keV protons and 4.0×1014 cm2 s−1 for 1 keV
electrons, corresponding to 0.003κ0 and 0.008κ0 using
simulation units. Test-particle simulations have suggested
that κ⊥/κP is about 0.02–0.04 and nearly independent
of particle energy(Giacalone & Jokipii 1999). There is
also observational evidence suggesting that κ⊥/κP can
be quite large(e.g., Dwyer et al. 1997; Zhang et al. 2003).
Here we examine the effect of κ⊥/κP by adopting three
different perpendicular diffusion values, κ⊥/κP=0.01, 0.05,
and 1.0.

The Parker transport equation can be solved by integrating
the stochastic differential equation corresponding to the
Fokker–Planck form of the transport equation (Zhang 1999;
Florinski & Pogorelov 2009; Pei et al. 2010; Kong et al. 2017).
Neglecting the source term Q in Equation (3) and assuming
F=fp2,
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interpolate these parameters to the particle positions and then

calculate the other required parameters:
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where κP and κ⊥ can be functions of Bx, By, and B, so ∂κP/∂x,
∂κP/∂y, ∂κ⊥/∂x, and ∂κ⊥/∂y still depend on the derivatives
∂Bx/∂x, ∂Bx/∂y, ∂By/∂x, and ∂By/∂y. The detailed expres-
sions depend on the diffusion model to choose.
In this work, we use a derivative-free Milstein method

(Burrage et al. 2004) to solve the stochastic differential
equation. It is different from the usual method due to one
more term, which makes it become a higher-order method:
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where X corresponds to spatial positions x, y and particle
momentum p in our simulation. Here f (Xt, t) is the
deterministic term, g(Xt, t) is the probabilistic term, h is the
time step, and N(0,1) indicates a normal distribution, which is
substituted with a uniform distribution 3 , 3-[ ] in our
simulations to speed up the computation. For a 1D problem, the
particle moves a distance satisfying l x xmax ,x
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and lx should be much smaller than the spatial variation scale of
the fields. In this work, we assume x x2 2áD ñ < áD ñ and choose
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Δt so that lx=δx, where δx is the grid size. For our 2D
problems, we choose the following criteria to determine the
time step:
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3. Results

3.1. Compression in a Reconnection Layer

As reconnection evolves, the current sheet becomes thinner and
eventually unstable to the plasmoid instability (Loureiro et al.
2007; Bhattacharjee et al. 2009; Comisso et al. 2016). Figure 1
shows the time evolution of the out-of-plane current density jz and
plasma density ρ. At t=2.5τA, where τA is the Alfvén crossing
time Ly/vA, the current sheet just starts to break into magnetic
islands (Figures 1(a) and (d)). These magnetic islands tend to
contract due to magnetic tension force and merge with each other
to form larger islands (t=7.5τA and 10τA). Figures 1(b) and (c)
show that new islands are continuously generated in the unstable
current sheet. During these processes, the maximum plasma
density increases from 1.0 to 3.0 or higher (Figures 1(e) and (f)).
The regions with enhanced density are concentrated in magnetic
islands, reconnection exhaust, and inflow regions around the top
and bottom sides of the magnetic islands. Due to the mass
conservation in the simulation domain, density decreases in the
inflow regions close to the reconnection layer and some regions in

Figure 1. Out-of-plane current density jz and plasma density ρ at t=2.5τA, 7.5τA, and 10τA for half of the simulation box (x=1.0–2.0), where τA is the Alfvén
crossing time Ly/vA. The initial plasma density ≈1.0.
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the islands. Particles can be accelerated or decelerated when
crossing these regions. We expect that the net effect will be
acceleration because, on average, the density increases as particles
move from the inflow to the outflow regions.

The enhanced plasma density suggests that the plasma in the
reconnection layer is compressed. To further examine the
plasma compressibility, Figure 2 shows the time evolution of
the density distributions f (ρ) for different runs. Plasma density
evolves to have a broad distribution from an initially nearly
uniform value ρ0. The distributions constantly change as the
simulation evolves, suggesting that the reconnection layer is
very dynamic. Take the run with Bg=0, for example, where
ρ/ρ0 reaches about 6 and then decreases to about 4, suggesting
that the compressed plasma in the reconnection layer can
expand at a late stage. Due to the mass conservation, Figure 2
shows significant distribution with ρ/ρ0<1. The guide field
plays an important role in controlling the plasma compressi-
bility. As Bg increases, the maximum density decreases from
about 6 when Bg=0.0 to 2.7 when Bg=1.0. This result is
consistent with previous MHD simulations(Birn et al. 2012;
Provornikova et al. 2016). Note that f (ρ) for Bg=0.2 is close
to the case with Bg=0, indicating that a weak guide field is
not dynamically important here. This is because the magnetic
pressure from the guide-field component is only 0.04 times that
of the reconnecting component. The broad f (ρ) and the
nonuniform spatial distribution of ρ indicate that not all

particles can “see” the entire density transition and that the
particle energy spectrum might not be a simple function of the
compression ratio, as predicted by diffusion–advection analysis
in a planar current sheet (Drury 2012).

3.2. Particle Acceleration Due to Compression: Constant
Diffusion Coefficients

The onset time for fast reconnection varies with the guide
field. Since we are mostly interested in the phase when the
plasmoid instability is developed, we start solving the
acceleration of energetic particles by injecting pseudoparticles
into the simulation when a strong reconnection electric field
emerges. Figure 3 shows the time evolution of the maximum
value of the reconnection electric field jzh∣ ∣, where η is the
resistivity. Here jz maxh∣ ∣ starts growing at different times as the
guide field varies. For runs with Bg=0 and 0.2, the rise time is
almost the same. For runs with higher Bg, it takes longer for

jz maxh∣ ∣ to grow. Based on this result, we inject particles at 2τA
when Bg=0 or 0.2, at 2.5τA when Bg=0.5, and at 5τA when
Bg=1.0. For all the simulation cases, we continue to run the
simulation for 10τA and solve the transport equation.
We now discuss the results of energetic particle acceleration.

Figure 4 shows the final particle energy spectra when using
constant diffusion coefficients. We show two sets of simula-
tions, one for protons with an initial energy of 10 keV and

Figure 2. Time evolution of the density distributions for runs with different guide fields. The plasma density is normalized by the initial values in each simulation.
Time t is normalized by the Alfvén crossing time τA=Ly/vA.
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κP=κ⊥=0.003κ0 (Figure 4(a)) and the other for electrons
with an initial energy of 1 keV and κP=κ⊥=0.008κ0
(Figure 4(b)). The eventual particle energy spectra resemble
power-law distributions. When the guide field is weak, the
power-law distributions extend several orders of magnitude in
energy. As the guide field gets stronger, the power-law spectra
become steeper and shorter, indicating that particle acceleration
is more efficient in the reconnection with a weaker guide field.
The spectra are close to each other for cases with Bg=0 and
0.2. This is because the compressibilities of the two cases are
close to each other (Figure 2). When Bg increases to 1.0, the
particle spectrum becomes very steep, with f (ε)∼ε−8.45 for
protons and f (ε)∼ε−12.1 for electrons, and the maximum
energy is less than 10 times the initial particle energy. These
results show that the guide-field strength is critical for particle
acceleration during magnetic reconnection. When the guide
field is weak, the plasma is strongly compressed in the
reconnection layer, leading to an energy spectrum harder than
that of the strong guide-field case. This trend for the relation
between the spectral index and the compressed plasma density
is in agreement with Drury (2012), except that the spectral
index also has a weak dependence on the diffusion coefficient.

To examine the nature of particle acceleration in a
reconnection layer, we then study how the particle acceleration
rate depends on the flow speed, which is about the Alfvén
speed vA in a reconnection layer. We add another three
simulations with fixed 1.5 10 cm s14 2 1k k= = ´^

-
 and

L0=5000 km but different vA from 300 to 104 km s−1 for
the MHD run with Bg=0. The normalized κP and κ⊥ then
change from 0.01κ0 to 3×10−4κ0. For each pseudoparticle,
we calculate the acceleration rate dp/dt=Δp/Δt for each
short time interval Δt=0.0005τA. Then, we statistically
calculate the acceleration rate for all particles in the system.
Figure 5(a) shows the distributions of dp dtá ñ˜ , averaged from
t=2τA to 12τA, where we have normalized the simulation
time t with L0/vA0, and vA0 is 300 km s−1 in our normalization.
The measured acceleration rate is close to zero near the injected
momentum, since most of the injected pseudoparticles are
outside of the reconnection layer in the beginning. At higher
energies, the acceleration rate becomes a power-law-like
distribution as a function of momentum dp dt C p p0á ñ = a˜ ( ) .
The acceleration rate index α is 1.06–1.10, which is expected as
particles gain energy through the compression term vp 3-  ·

in the Parker transport equation. Figure 5(a) also shows that the
acceleration rate increases when the Alfvén speed gets larger. To
further study the scaling of the acceleration rate with respect to
vA, we fit C as a function of vA in Figure 5(b). We find the
acceleration rate normalization C v vA A0

1.36µ ( ) , where vA0 is
300 km s−1 in our normalization, suggesting that the acceleration
mechanism is a mixture of a first-order Fermi mechanism
(∝V/c; e.g., Blandford & Eichler 1987) and second-order Fermi
mechanism (∝(V/c)2; Fermi 1949), where V is the fluid speed
(∼vA in reconnection) and is typically much smaller than the
light speed c. This is because particles can gain energy in the
compression region and lose energy in the expansion region in
the reconnection layer. If the compression region and expansion
region are uniformly distributed in the reconnection layer,
particles will experience a second-order Fermi acceleration
similar to the original idea of Fermi (1949). Instead, on average,
particles experience a net compression as they move into the
reconnection layer, where plasma is strongly compressed, as
shown in Figure 1. Since the reconnection layer is dynamically
evolving, the acceleration rate is time-dependent as well.
Figures 5(c) and (d) show the time evolution of the acceleration
rate index α and acceleration rate normalization C. The α index
fluctuates throughout the simulation. For the three cases with
stronger acceleration, the power-law index fluctuates around 1.1.
For the case with vA=300 km s−1, the index is larger, which is
likely due to statistical errors, as only a small number of particles
are accelerated to high energy. Figure 5(d) shows that the
acceleration rate generally decreases as the simulation evolves,
which is likely because reconnection becomes saturated in the
late stage.

3.3. Particle Acceleration Due to Compression: Energy-
dependent Diffusion Coefficients

The constant and isotropic diffusion coefficient is
a simplified assumption. In reality, κ usually depends on
particle momentum. According to the quasi-linear theory
(Equation (5)), p4 3k ~ for nonrelativistic particles propagat-
ing in magnetic turbulence with a Kolmogorov power
spectrum. The diffusion coefficient in directions parallel and
perpendicular to the magnetic field can be quite different, and
previous test-particle calculations give a perpendicular diffu-
sion coefficient of about a few percent of the parallel diffusion.
Figure 6 shows the final energy spectra when we use energy-
dependent p p1 0

4 3k k= ( ) (κ1=0.008κ0 for electrons and
0.003κ0 for protons) with three different κ⊥/κP: κ⊥=κP,
κ⊥=0.05κP, and κ⊥=0.01κP. The figure shows several
trends. First, particles still develop power-law energy spectra,
but the power-law energy range is shorter, and the spectra roll
over at certain energies depending on the diffusion model. The
maximum particle energies are lower compared with the case
with constant κ because high-energy particles can escape from
the acceleration regions much more easily due to their larger
diffusion coefficients. Second, as the ratio κ⊥/κP decreases,
the spectra become harder, and the maximum energy is higher.
The spectra change dramatically for cases with Bg=1.0. The
power-law index s changes from s∼8.5 to s∼4 for protons
and from s∼12 to s∼4.5. This is because when cross-field
diffusion gets smaller, particles could stay in the acceleration
regions for a longer time. Third, the maximum energies get
close for cases with weak or moderate guide fields (Bg�0.5),
even though the power-law part is steeper for cases with higher
guide fields. Finally, in all cases, protons can be accelerated to

Figure 3. Time evolution of the maximum of jzh∣ ∣ for different runs, where η is
the resistivity and jz is the out-of-plane current density.
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Figure 4. Particle energy distributions for cases with constant diffusion coefficients. Here p is the particle momentum, and ε indicates the particle energy and is
normalized by the initial particle energy ε0. The dashed lines indicate power-law fittings. For panel (a), we assume that the particles are protons with an initial energy
of 10 keV and κP=κ⊥=0.003κ0. For panel (b), we assume that the particles are electrons with an initial energy of 1 keV and κP=κ⊥=0.008κ0.

Figure 5. Diagnostics on particle acceleration rate for simulations with constant κ. We vary the value of κ by changing the Alfvén speed vA and keeping the length
scale L0 constant. Here we use the MHD run with Bg=0. (a) The dp dtá ñ˜ as a function of particle momentum. Note that we have normalized the simulation time t in
all runs with L0/vA0, which is 300 km s−1 in our normalization, so t tv LA0 0=˜ . We accumulate dp/dt and particle number np in each momentum bin every 0.0005τA
from 2τA to 12τA and calculate dp dt dp dt v n vpA A0á ñ = å˜ ( ) ( ). The solid lines are simulation data, and the dashed lines are the power-law fittings Cpα, where C is
the acceleration rate normalization and α is the acceleration rate index. Note that the power-law fitting is shifted for better visualization. (b) Scaling of C and hence
dp dtá ñ˜ with respect to vA. The four dots correspond to the four runs in panel (a). The black solid line is the power-law fitting. We normalize vA by vA0. (c) Time
evolution of the acceleration rate index starting at t=5τA, when particles can be accelerated to fairly high energies. The black dashed line indicates an acceleration
rate index of 1.1. (d) Time evolution of the acceleration rate normalization C.
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hundreds of keV, and electrons can be accelerated to tens of
keV. For the case with κ⊥=0.01κP, protons are accelerated to
a few MeV, and electrons are accelerated to 100 keV, which is
consistent with solar flare observations.

The accelerated particles are not uniformly distributed in the
simulations. Figure 7 shows the spatial distributions of high-
energy electrons (9–36 keV) for the simulation using the MHD
run with Bg=0, κP=0.008κ0, and κ⊥=0.01κP. At an
earlier time (t=7.5τA), high-energy electrons are mostly in the
island at y∼1.4, the top side of the large island at y∼0.5, and
the island-merging region at y∼1.65, suggesting that these

regions are efficient at accelerating particles. As the simulation
evolves, high-energy particles are advected with reconnection
outflow and diffuse to broader regions. Close to the end of the
simulation (t=10τA), high-energy particles become more
uniform, but their distribution still peaks at the two ends of the
large magnetic island and in the reconnection exhaust. This
geometry is similar to the above-the-loop-top hard X-ray
sources observed in solar flares (Krucker et al. 2010; Oka
et al. 2015). The confinement of high-energy electrons could
potentially explain the hard X-ray emission observed by
RHESSI.

Figure 6. Particle energy distributions when κ∝p4/3 for cases with different κ⊥/κP. For panels (a)–(c), we assume that the particles are protons with an initial energy
10 keV and initial κP=0.003κ0. For panels (d)–(f), we assume that the particles are electrons with an initial energy 1 keV and initial κP=0.008κ0.
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3.4. Trajectories of Pseudoparticles

To further illustrate how particles are accelerated, Figure 8
shows a representative pseudoparticle trajectory in the case
with a constant κ=0.003κ0 and without a guide field. Three
red dots indicate the three major acceleration phases, including
reconnection exhaust, contracting islands, and island-merging
regions. Initially, the particle slowly gets advected into the
reconnection layer. It gains energy in a short period of time
(7τA<t<8τA) when the particle diffuses across the
reconnection current sheet, where the background plasma is
highly compressed. This indicates that the particle acceleration
in reconnection exhaust is dominated by a first-order Fermi

process. The particle is then trapped in a magnetic island and
gains more energy, but the rate of energy increase becomes
lower. This is because particles can lose energy when they
cross expanding regions of the magnetic island (Figure 1). In
the late phase, the small island merges with the large island,
and the particle gets accelerated and decelerated multiple times
but still gains more energy on average. These results indicate
that particle acceleration in contracting islands and island-
merging regions is a mixture of first- and second-order Fermi
processes but is dominated by the first-order process. This is
due to the multiple compression and expansion layers in these
regions and the oscillations caused by merging magnetic
islands. Note that the contracting island is a favorable region

Figure 7. Spatial distributions of high-energy particles for the MHD run without a guide field at t=7.5τA, 8.8τA, and 10.0τA. Here we assume that the particles are
electrons with an initial energy ε0=1 keV, κP=0.008κ0, and κ⊥/κP=0.01. We choose particles with energy 9.0�ε/ε0<36.0.

Figure 8. Pseudoparticle trajectory in the case with a constant κ=0.003κ0 and the MHD simulation without a guide field. Panels (a)–(c) show the trajectory with
plasma density ρ as background at three different time frames. The initial plasma density ≈1.0. The red dots indicate the particle positions at each time frame. Panel (d)
shows the particle momentum vs. x position. Panel (e) shows the particle momentum vs. time. The three red dots indicate the three time frames shown in panels
(a)–(c). The initial particle momentum is 0.1. Since we use periodic boundary conditions, we have shifted the background and particle trajectory when the particle
crossed the boundary at y=2.0 for better visualization.
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for the first-order Fermi acceleration, but the pseudoparticle
trajectory shows that the contracting island (Figure 8(b) and the
middle red dot in panels (d) and (e)) is not the dominant
mechanism. Some other trajectories do show that the contract-
ing island can be the dominant acceleration process (not
shown here).

4. Discussion and Conclusion

In this work, we have studied particle acceleration in a large-
scale reconnection site through solving the Parker energetic
particle transport equation using velocity and magnetic fields
from MHD simulations of high-Lundquist-number magnetic
reconnection. We found that compression in the reconnection
layer leads to significant particle acceleration and the formation
of power-law energy distributions for both electrons and ions. As
the guide field becomes stronger, the power-law distribution gets
steeper, and the energy rollover of the power-law distribution
and maximum particle energy decrease. The power-law index
for electrons is about 2.4–13.1, depending on the guide-field
strength, which is close to the range found in solar flare
observations(Effenberger et al. 2017; Oka et al. 2018) and the
observations of electron SEP events (Krucker et al. 2007, 2009).
The strong dependence of particle acceleration on the guide field
may be tested in observations (e.g., Qiu et al. 2010). When the
perpendicular spatial diffusion is much smaller than the parallel
diffusion, we found that the maximum electron energy reaches
∼100 keV and the maximum proton energy reaches a few MeV.
Detailed analysis shows that the acceleration rate vA

1.36µ ,
indicating a mixture of first- and second-order Fermi processes.
Pseudoparticle trajectories show that the particle acceleration in
reconnection exhaust is dominated by first-order Fermi processes
and that the acceleration in contracting and merging magnetic
islands is a mixture of first- and second-order Fermi processes
but still dominated by first-order Fermi processes.

Our simulations also generate 2D spatial distributions of
energetic particles. We found that the energetic particles are
concentrated in reconnection exhaust and magnetic islands. If
combined with a radiation model, the 2D distributions could be
used to make a predicted radiation map that is comparable with
hard X-ray observations by RHESSI and FOXSI and micro-
wave imaging by radio observatories such as the Very Large
Array and Expanded Owens Valley Solar Array (Gary et al.
2018).

Our results are consistent with those of Drury (2012), who
showed that the spectral index depends on the compressibility
of the reconnection layer. But we found that the spectral index
is not just a simple expression of the compression ratio
between the outflow and inflow regions. This is likely due to
the complex structures (e.g., magnetic islands) and multiple
compression and expansion regions formed in the reconnec-
tion layer. We found in our simulations that the particle
energy spectra depend on the diffusion model, especially the
ratio of the perpendicular and parallel diffusion coefficients.
Particle diffusion processes depend on the properties of
turbulence in the reconnection region, such as the turbulence
spectrum, turbulence amplitude, correlation length, and
turbulence anisotropy, which are still under active research
(Huang & Bhattacharjee 2016; Beresnyak 2017; Boldyrev &
Loureiro 2017; Kowal et al. 2017; Loureiro & Boldyrev
2017a, 2017b; Mallet et al. 2017; Comisso et al. 2018; Dong
et al. 2018; Walker et al. 2018). We expect a better
understanding of these turbulence properties and hence the

particle diffusion processes in a reconnection layer in the near
future.
Our results are also consistent with in situ observations in

Earth’s magnetotail. Specifically, using spacecraft measure-
ments, Fu et al. (2013b) found that the reconnection layer is
compressible and plasmoids are easily formed in this compres-
sible layer; Fu et al. (2013a) pointed out that the compressibility
of the reconnection layer can affect the contraction of magnetic
islands and hence the electron acceleration efficiency.
While fluid compression is the only acceleration mechanism

considered in this study, incompressible effects (e.g., fluid
shear) could also accelerate particles(Drake et al. 2006; Zank
et al. 2014; le Roux et al. 2015; Li et al. 2018), potentially
leading to stronger particle acceleration than that in observa-
tions. Quantifying how other mechanisms change the particle
spectral shape and maximum energies may be important for
future studies.
The developed numerical tools are not limited to studying

particle acceleration in large solar flares. They can also be used
to study particle acceleration at the reconnection sites of
nanoflares, which have been proposed as a candidate for
explaining the power-law energy spectrum of superhalo
electrons in the solar wind at quiet times(Wang et al. 2012,
2015). We defer this to a future work.
Our 2D simulations have a few limitations. First, the periodic

boundary conditions allow the large island to grow to the
system size, while in a solar flare, the largest island is likely to
be ejected out of the reconnection layer and cannot grow to the
system size; thus, the current boundary conditions might lead to
stronger particle acceleration. Second, the 2D configuration
prevents the field variation along the out-of-plane direction,
which might affect the compression energization that depends
on the divergence of fluid velocity. Third, we use a plasma
β=0.1 instead of a lower plasma β, which may be present for
solar flares, due to technical difficulties when doing high
Lundquist number simulations. Lower plasma β might lead to
stronger compression and hence stronger particle acceleration.
To conclude, we find that fluid compression in a reconnec-

tion layer leads to significant particle acceleration and the
formation of power-law energy distributions for both electrons
and ions. The compressibility of the reconnection region, which
depends on the guide field, determines the spectral index and
cutoff energy of the power-law distribution and the maximum
particle energy. The diffusion coefficient and its anisotropy also
influence the key features of the nonthermal particle spectra.
Our analysis shows that the acceleration in the reconnection
layer is a mixture of first- and second-order Fermi processes.
Our model includes the acceleration mechanism derived from
fully kinetic PIC simulations (Li et al. 2018) and also applies to
a macroscopic reconnection layer like in a solar flare. The
resulting time-dependent spatial and energy distributions of
energetic particles can provide explanations for observed
energetic particle emissions in solar flares and other astro-
physical regimes.
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