
Comment on “Nonideal Fields Solve the Injection
Problem in Relativistic Reconnection”

Sironi [1] (hereafter S22) reported the correlation
between high-energy particles and their crossings of
regions with electric field larger than magnetic field
(E > B regions) in kinetic simulations of relativistic
magnetic reconnection [2–8]. They claim that E > B
regions (for vanishing guide fields) accelerate particles
to the injection energy γinj ∼ σ (magnetization). S22 shows
that if test particles are reset to low energies in E > B
regions, injection is suppressed. We reexamine these claims
using a simulation resembling the reference case in S22
with no guide field. We show that E > B regions contribute
very little to injection (∼10%γinj) as they only host particles
for a short duration. The energization before any E > B
crossings has a comparable contribution, indicating E > B
regions are not unique for pre-acceleration. A new test-
particle simulation that zeroes outE during E > B does not
strongly influence injection. We suggest that the procedure
to exclude E > B acceleration in S22 partly removes
acceleration outside E > B, leading to a false conclusion.
We initialize a force-free layer [1,6] with the reconnect-

ing-field-magnitude B0 and half-layer-thickness λ ¼ 6de
(skin depth). We focus on the zero-guide-field case, and
refer readers to [9] on guide-field effects. We use σ ¼ 50

and temperature kT ¼ 0.36mec2, and have confirmed our
conclusion holds when varying them. The dimension is
Lx × Lz ¼ 1600de × 1200de and the simulation lasts
2.5Lx=c (same as S22). We added a perturbation to trigger
reconnection and removed the initial current-sheet contri-
butions for all analyses. Each de is resolved by 4 cells with
100 positron-electron-pairs per cell. Boundaries are peri-
odic in the x direction and conducting (reflecting) in the z
direction for fields (particles). We uniformly select and
trace 1.28 million particles and record the electromagnetic
fields they experience every time step [10].
During injection of each particle before it reaches

γ ¼ σðσ=4Þ, 79.4%(53.7%) of injected tracers have
E > B crossings (“E > B particles”). S22 finds a stronger
correlation, since they label all particles that ever crossed
E > B regions during the entire simulation [11]. Clearly, a
significant fraction of particles are injected without needing
E > B [9]. Nevertheless, it is still interesting to explore if
E > B regions are important for E > B particles.
During injection, E > B particles can have multiple

E > B crossings. Our analysis includes all the duration
when particles experience E > B. This time constrains the
acceleration in E > B regions ΔγE>B ≲ R

qrB0cdt=ðmec2Þ,
where reconnection rate r ∼ 0.1 [12–16]. For σ ¼ 50,
ωpetinj ≳ 50ð12.5Þ is needed for γinj ¼ σðσ=4Þ. However,
the mean time that particles stay in E > B regions is ωpet̄ ¼
4.3ð1.9Þ for γinj ¼ σðσ=4Þ and nearly no E > B particles
have time for injection. Figure 1(a) shows the distributions of
particle energy gain (before reaching γinj) in E > B regions,
before anyE > B crossings, and outside E > B regions after

the first E > B crossing. The acceleration in E > B regions
is insufficient for direct injections, with Δγ̄E>B ¼ 4.9ð1.7Þ
for γinj ¼ σðσ=4Þ. Interestingly, we find comparable accel-
eration before particles encounter E > B [Δγ̄b;E>B ¼
5.6ð2.7Þ for γinj ¼ σðσ=4Þ]. This suggests that E > B
acceleration is not unique for pre-acceleration. Figure 1(a)
shows that most acceleration during injection occurs outside
E > B regions. Having a lower upstream temperature makes
the E > B regions contribute slightly more but does not
change our main conclusion. We evolve a test-particle
component that does not “see” the electric field in E > B
regions, and find 88.5%(96.3%) particles are still injected
compared to self-consistent particles for γinj ¼ σðσ=4Þ. No
major difference exists between spectra of the test particles
and self-consistent particles [Fig. 1(b)]. In contrast, when
particle energies are reset to an energy of 10kT during
E > B crossings (resembling S22), injection is suppressed.
This difference is because resetting particle energy removes
the acceleration before and between E > B crossings.
We demonstrated that the apparent correlation between

particle injection and E > B crossings does not have direct
physical relation. Most injection is not achieved by E > B
regions. We have reached the same conclusion for different
temperatures, σ and domain sizes, and will report
elsewhere.
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FIG. 1. (a) Distributions of energy gain for E > B particles
during injection: in E > B regions, before E > B crossing, and
outside E > B regions after the first crossing. (b) Spectra for
self-consistent particles, test particles with E ¼ 0 when E > B,
and test particles with energy reset to 10kT when E > B
(resembling S22).
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