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Energy dissipation and entropy in collisionless plasma
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It is well known that collisionless systems are dissipation free from the perspective of particle collision and
thus conserve entropy. However, processes such as magnetic reconnection and turbulence appear to convert
large-scale magnetic energy into heat. In this paper, we investigate the energization and heating of collisionless
plasma. The dissipation process is discussed in terms of fluid entropy in both isotropic and gyrotropic forms.
Evolution equations for the entropy are derived and they reveal mechanisms that lead to changes in fluid entropy.
These equations are verified by a collisionless particle-in-cell simulation of multiple reconnecting current sheets.
In addition to previous findings regarding the pressure tensor, we emphasize the role of heat flux in the dissipation
process.
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I. INTRODUCTION

Particle acceleration and heating are common phenomena
in plasma. For example, magnetic reconnection converts free
magnetic energy into particle energy and thus leads to the
acceleration of particles. In this case, the energy source is
the free magnetic energy stored in the unstable antiparallel
magnetic field. Another example is turbulence, which results
from the nonlinear interaction of structures and waves, and
transports energy from large-scale to small-scale flow energy
(or in other words, large eddies to small eddies). The energy is
eventually dissipated as heat at very small scales, which leads
to the heating of plasma. Magnetic reconnection and turbu-
lence are frequently invoked to explain space observations of
particle acceleration and the heating of solar corona and solar
wind (e.g., Refs. [1–3]).

It is well known that the typical space plasma has a very
long collisional mean free path (e.g., on the order of au, or
astronomical unit, in the solar wind near Earth) and thus is
considered as collisionless [4]. A consequent question is then
how to characterize the dissipation process in a collisionless
system. An increase in temperature corresponds to plasma
heating, but it does not necessarily represent physical dissi-
pation as it might be adiabatic. The pressure-strain interaction
was recently suggested as a proxy of dissipation [5] and has
been applied to observational data [6], but its validity needs to
be further tested.

Classic statistical physics tells us that the dissipation pro-
cess can be described by entropy, which is a nondecreasing
function for an isolated macroscopic system according to
the second law of thermodynamics. In kinetic theory, the
entropy is often related to Boltzmann’s H-function [7,8].
The Boltzmann’s H-theorem states that the H-function only
decreases in the presence of a collision operator. In this sense,
entropy is conserved in collisionless plasma. The conservation
of entropy has been verified by recent kinetic simulations [9].

In fluid dynamics, the entropy is frequently defined as
S ∼ log(p/ργ ), where p is the pressure, ρ is the density, and γ

is the adiabatic index (ratio of specific heats). This expression,
which we refer to as fluid entropy, has the advantage that it is
easy to calculate. For collisionless plasma, the fluid entropy
could be a useful proxy for dissipation. In Sec. II, we show a
derivation of fluid entropy as well as its gyrotropic extension
from the thermodynamic perspective. From the basic kinetic
theory, it is straightforward to derive evolution equations for
the fluid entropy, as shown in Sec. III. These equations suggest
several mechanisms that are responsible for the change of
fluid entropy. The relation of entropy and previously discussed
pressure-strain interaction [5] is thus established in this study.
In addition, we discuss the role of heat flux, which has been
neglected in most previous studies. In Sec. IV, we demon-
strate our results by a collisionless particle-in-cell simulation.
Finally, a brief dicussion and conclusions are found in Sec. V.
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II. KINETIC AND FLUID ENTROPY

A. Kinetic entropy

Kinetic entropy or Boltzmann entropy is discussed in most
textbooks of statistical physics (e.g., Ref. [10]). It is defined
through the number of microstates �,

S = k log �, (1)

where k is the Boltzmann constant. Equation (1) is the most
general and precise definition of entropy. The second law
of thermodynamics states that the entropy thus defined is a
nondecreasing quantity for an isolated system.

In kinetic theory, another useful quantity is the “Boltzmann
H” function:

H =
∫

f log f d3xd3v, (2)

where f is the particle distribution function. The Boltzmann
H-theorem states that the H function of a system is nonin-
creasing, i.e.,

d

dt
H � 0.

Thus, the function −kH can be interpreted as the entropy.
Indeed, one can show that the decreasing of H function is due
to collision (e.g., Ref. [11]). A recent study shows that the
Boltzmann entropy or H function, when carefully evaluated in
collisionless PIC simulations, is approximately conserved [9].
A comparison of entropy increase between collisional and
collisionless simulations is illustrated in Ref. [12].

B. Entropy of ideal gas

In fluid dynamics and MHD, the entropy is frequently
defined as the following:

s = 3

2
log

p

ργ
, (3)

where as usual, p is the pressure, ρ is the mass density, and
γ is the adiabatic index. In this paper, we use the symbol s
to denote the intrinsic entropy, i.e., the entropy density, which
depends only on the intrinsic properties of the system. The
Boltzmann entropy S in Eq. (1) or Eq. (2) is extrinsic, which
depends on the amount of material. The intrinsic and extrinsic
entropy can be related by s = S/Nk in a uniform medium.
What is often overlooked is that the definition of entropy
Eq. (3) stems from the ideal gas equation of state, and may not
be valid for magnetized plasmas. For completeness, we show
a brief derivation of Eq. (3). We start with the thermodynamic
relation

dS = dQ

T
= dE

T
+ dW

T
, (4)

where T is the temperature, dQ is the heat, dE is the change
in energy, and dW is the work. For ideal gas, we have the
equation of state

pV = NkT, or p = nkT, (5)

where N is the number of particles, and n is the number
density. The important property of ideal gas is that the internal

energy E is only a function of temperature (but not the
volume) with the following relation:

E (T ) = 3

2
NkT = CvT ⇒ dE

T
= CvdT

T
= 3

2
Nk

dT

T
,

(6)
where Cv is the specific heat at a constant volume. Now we
use p and n as independent variables, and assuming a fixed
number of particles, so that

dT = 1

nk
d p − p

n2k
dn; dV = − N

n2
dn.

Using the above relations and dW = pdV , we find

dS = Cv

d p

p
− (Cv + Nk)

dn

n
.

Notice that Cv + Nk = Cp the specific heat at a constant
pressure, and γ = Cp/Cv the adiabatic index, implying that
the above relation then becomes

dS = Cv

(
d p

p
− Cp

Cv

dn

n

)
= Cvd log

p

nγ
= 3

2
Nkd log

p

nγ
.

(7)
Thus, Eq. (3) is recovered except for some constant factors.

C. Entropy of an anisotropic fluid

One of the key assumptions made in the derivation of
the fluid entropy Eq. (3) is the ideal gas equation of state
Eqs. (5) and (6). Now we go one step further and consider an
anisotropic fluid. The simplest plasma model with anisotropic
pressure is the CGL model due to Chew, Goldberger, and
Low [13], where the pressure tensor is assumed to be of
the form

P = p‖bb + p⊥(I − bb). (8)

Here, P is the pressure tensor, I represents the identity tensor,
and b represents the magnetic field unit vector. The scalar
pressure is related to the parallel and perpendicular pres-
sure according to p = (p‖ + 2p⊥)/3. When the parallel and
perpendicular pressure are the same, p‖ = p⊥ = p, and the
pressure tensor reduces to the isotropic pressure P = pI. A
comprehensive review of the CGL model is found in Ref. [14].
On neglecting the heat flux, the CGL pressure follows the
evolution equations,

d p‖
dt

+ p‖∇ · u + 2p‖bb : ∇u = 0, (9)

d p⊥
dt

+ 2p⊥∇ · u − p⊥bb : ∇u = 0. (10)

See also Eqs. (27) and (28) for more general cases. Here,
the d/dt = ∂/∂t + u · ∇ represents the convective derivative.
Following the common notation, the colon symbol “:” rep-
resents the double contraction operator between two tensors,
or in index notation, bb : ∇u ≡ bib j∂ jui. The classical CGL
imposes the same induction equation as in ideal MHD with
the motional electric field only,

∂B
∂t

= ∇ × (u × B).

Note that u here is the flow velocity, which can be ap-
proximated by the ion flow velocity ui. This simplifies the
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term bb : ∇u to

bb : ∇u = 1

B
b · (B · ∇u) = 1

B

dB

dt
+ ∇ · u.

From here, assuming cold electrons, it is straightforward to
derive the classical CGL double adiabatic equations:

d

dt

(
p‖B2

ρ3

)
= 0,

d

dt

(
p⊥
ρB

)
= 0. (11)

It should be emphasized that the pressure here consists only
of ion contributions, and ρ = ρi + ρe is the total mass density,
although the pressure Eqs. (9) and (10) are valid for all species
(after assuming CGL pressure and neglecting heat flux).

To find the entropy for a CGL fluid, we again use the
thermodynamic relation Eq. (4). The equation of state is
similar to the ideal gas case, but we need consider separately
the parallel and perpendicular pressure and temperature:

p‖ = nkT‖, p⊥ = nkT⊥.

The internal energy now relates to both parallel and perpen-
dicular temperature as

E = E‖ + E⊥ = 1
2 NkT‖ + NkT⊥ = 3

2 NkT . (12)

Although the relation is the same as the ideal gas case when
expressed in terms of the isotropic temperature T = (T‖ +
2T⊥)/3, we argue that a single temperature is no longer
sufficient to characterize the macrostate of thermodynamic
equilibrium—both T‖ and T⊥ are needed. Therefore, we sep-
arate the entropy equation into parallel and perpendicular
components:

dS‖ = dE‖
T‖

+ dW‖
T‖

, dS⊥ = dE⊥
T⊥

+ dW⊥
T⊥

.

In calculating the parallel and perpendicular work, one should
take into account the exchange between parallel and perpen-
dicular energy in addition to the pdV contribution. Using the
CGL pressure Eqs. (9) and (10) and the induction equation,
the work is modified as

dW‖ = p‖dV + p‖V
dB

B
, dW⊥ = −p⊥V

dB

B
, (13)

so that the combination of the two yields dW = pdV in the
limit p‖ = p⊥. The relation between Eqs. (9), (10), and (13)
is shown explicitly in the Appendix. Physically, Eq. (13)
stems from the conservation of magnetic flux and particles
(see Ref. [8] for a more physical derivation). Then, following
the same procedure of the ideal gas case, we obtain the parallel
and perpendicular entropy as

dS‖ = Cv‖

(
d p‖
p‖

− Cp‖
Cv‖

dn

n
+ 2

dB

B

)
= Cv‖d log

p‖B2

nγ‖
,

(14)

dS⊥ = Cv⊥

(
d p⊥
p⊥

− dn

n
− dB

B

)
= Cv⊥d log

p⊥
nB

. (15)

Here, we have Cv‖ = Nk/2, Cv⊥ = Nk, and thus γ‖ = 3, γ⊥ =
2 following Eq. (12). Note that because the pdV term only
appears in the parallel work in Eq. (13), the perpendicular
adiabatic index γ⊥ is not used in the entropy equation. The

sum of Eqs. (14) and (15) gives the total entropy:

dS = dS‖ + dS⊥ = Cvd log
p1/3

‖ p2/3
⊥

n5/3
, (16)

or

S = Cv log
p1/3

‖ p2/3
⊥

n5/3
. (17)

Thus, we recover the early result obtained by Abraham-
Shrauner (see Eqs. (9)–(11) of Ref. [15]). Under classical
CGL assumptions, the parallel, perpendicular, and total en-
tropy are all conserved quantities following the double adi-
abatic Eqs. (11). However, the regular isotropic fluid entropy
Eq. (3) may not be conserved in this scenario using the normal
definition p = (p‖ + 2p⊥)/3. Reference [15] also points out
that the CGL fluid entropy Eq. (17) is consistent with the
Boltzmann H-function Eq. (2) evaluated with a bi-Maxwellian
distribution,

f = n

(
m

2πkT‖

)1/2( m

2πkT⊥

)
exp

[
− mv2

‖
2kT‖

− mv2
⊥

2kT⊥

]
,

which can be easily verified.
We conclude this section by noting that the fluid entropy,

in either isotropic or anisotropic form, is specific to the
macroscopic (or Clausius) entropy [16], which is consistent
with the Boltzmann entropy only for a system in local ther-
modynamic equilibrium (LTE). In the absence of collisions,
LTE may not be achieved, but processes such as turbulence
and magnetic reconnection can drive a collisionless system
to near equilibrium, characterized by increasing fluid entropy.
This is indeed illustrated by our simulations in Sec. IV.

III. PLASMA ENERGIZATION, HEATING, AND
THE ENTROPY EQUATIONS

A. Plasma energization and heating

We now use the fluid equations to study the plasma en-
ergization and heating. Deriving moments equations from
the Vlasov equation is known from most standard plasma
textbooks, so it is not shown here (see, e.g., Refs. [11,17]).
The relevant results are the equations of bulk kinetic energy
and thermal energy, as shown in Ref. [5],

∂εk

∂t
+ ∇ · (εku) = −∇ · (P · u) + P : ∇u + nqE · u, (18)

∂εth

∂t
+ ∇ · (εthu) = −P : ∇u − ∇ · q, (19)

∂ε

∂t
+ ∇ · (εu) = −∇ · (P · u) − ∇ · q + nqE · u. (20)

Here, E is the electric field and q is the charge of the
considered particle species (we drop the species subscript
for simplicity). Other quantities in the equations are defined
as moments: n and u are the number density and bulk flow
velocity as usual; ε = (1/2)

∫
f mv2d3v is the total energy

density of a plasma species with f (v) the velocity distri-
bution function; εk = (1/2)nmu2 is the bulk flow energy
density; εth = (1/2)

∫
f m|v − u|2d3v is the thermal energy

density. The pressure tensor is defined as the second mo-
ment P = ∫

f m(v − u)(v − u)d3v, and the heat flux vector
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is q = (1/2)
∫

f m|v − u|2(v − u)d3v (note that it is not to
be confused with the charge q). As an aside, the generalized
Ohm’s law suggests that the electric field can be decomposed
into ideal and nonideal components. However, they are not
distinguished in Eqs. (18) and (20) as the electric field here
represents the total electric field. The nonideal electric field
is thought to lead to dissipation as it can be interpreted as
the resistivity effect that breaks the “frozen-in” condition. In
the context of magnetic reconnection, the electron thermal
pressure term usually dominates the nonideal electric field
and the anisotropic or nongyrotropic pressure is also found
to be important within the electron diffusion region (e.g.,
Refs. [18,19]). The magnetospheric multiscale (MMS) mis-
sion has enabled direct measurements of these terms [20,21].
The role of nonideal electric field in dissipation can also be
understood from a single-fluid perspective, as illustrated by
Birn et al. [22] and Du et al. [23]. Detailed analysis based on
the generalized Ohm’s law is beyond the scope of this study.

For an isolated system, one may argue that the divergence
terms in Eqs. (18)–(20), when integrated over space, vanish
because of Gauss’ theorem. Therefore, one arrives at the
conclusion that the total plasma energization is due to the
work done by the electric field, and the pressure tensor term
P : ∇u acts as a channel that connects the bulk flow energy to
the thermal energy [5]. In other words, it is the work done by
the pressure tensor that contributes to the plasma heating.

To further illustrate the physical meaning of the term P :
∇u, the full pressure tensor is decomposed as

P = p‖bb + p⊥(I − bb) + Pn = Pc + Pn. (21)

Here, we recognize the familiar CGL pressure tensor Pc as in
Eq. (8) and the remaining part may be called nongyrotropic
pressure Pn (see Ref. [14] for a detailed discussion). Upon
decomposing the pressure tensor, it is easily verified that

P : ∇u = p∇ · u + 1
2 (p‖ − p⊥)bb : σ + Pn : ∇u, (22)

where we define the shear tensor σ as

σi j = ∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j∇ · u. (23)

The shear tensor is equivalent to the traceless strain-rate tensor
(Di j of Ref. [5]) within a factor of 2. The first term of
Eq. (22) represents the energization due to fluid compression,
the second term represents the shear or viscous energization,
and the third term is due to nongyrotropic effects [23,24].
Since the nongyrotropic pressure Pn is traceless, the last term
can also be written as

Pn : ∇u = 1
2 Pn : σ.

Alternatively, if one considers an isotropic pressure instead,
then the pressure tensor can be decomposed as

P = pI + �, (24)

where � is the anisotropic pressure tensor (or deviatoric
pressure tensor). This decomposition is adopted by, e.g., Yang
et al. [5]. Under this decomposition, the pressure tensor work
becomes

P : ∇u = p(∇ · u) + 1
2� : σ, (25)

which is Eq. (12) in Ref. [5]. Here, the fluid compression
effect is the same as Eq. (22), and we find that the pressure-
strain interaction (sometimes called “Pi-D”) term is equivalent
to the sum of shear and nongyrotropic energization.

B. The entropy evolution equations

The discussion above suggests that the plasma heating in
an isolated collisionless system is due to the pressure tensor
work, which includes compression, shear, and nongyrotropic
energization. Another related question is how the heating
process relates to actual dissipation and entropy change. In
general, an isolated system should conserve entropy when
collisions are completely ignored. This is indeed the case
for the Boltzmann entropy as illustrated nicely in Ref. [9].
However, the fluid entropy Eq. (3) or Eq. (17) need not be
a conserved quantity. Similar to the derivation of the energy
equations, it is straightforward to obtain an entropy evolution
equation from moments of the Vlasov equation. For entropy
in the isotropic form, we need to use the continuity equation
and the equation for scalar pressure. The scalar pressure is
related to the thermal energy as εth = (3/2)p, which is easy
to see from their definitions [also note that this is consistent
with the ideal gas equation of state Eqs. (5) and (6)]. The
result is

ds

dt
= ∂s

∂t
+ u · ∇s = −� : σ

2p
− ∇ · q

p

= − p‖ − p⊥
2p

bb : σ − Pn : σ

2p
− ∇ · q

p
, (26)

where we let the entropy density

s = 3

2
log

p

n5/3
.

Note that we have introduced the convective derivative d/dt
on the left side of the equation. Equation (26) suggests that
the entropy change of a fluid element is due to the pressure-
strain interaction (or shear/nongyrotropic energization) and
the heat flux. Comparing Eq. (26) with Eq. (20), one notices
that the compression energization p∇ · u is absent in the
entropy equation, which indicates that adiabatic compression
effect does not contribute to the change of entropy. This is
because the compression term is absorbed into the convec-
tive derivative. However, compression could be important in
plasma heating as it is part of the pressure tensor work, and
this has been verified by previous simulation studies [23,24].
Another key difference is that there are no divergence terms
in the entropy equation. This means that in principle, all terms
in Eq. (26) could contribute to the entropy change, even if
integrated over the volume of an isolated system.

For entropy in the anisotropic form, we need the equations
for both parallel and perpendicular pressure, and they can be
derived from the Vlasov equation in a similar way as the scalar
pressure equation. Here we take the result from Ref. [14]
(after slight rearrangements),

∂ p‖
∂t

+ ∇ · (p‖u) + 2p‖bb : ∇u + 2bb : (Pn · ∇u)

− d

dt
(bb) : Pn + bb : (∇ · Q) = 0, (27)
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∂ p⊥
∂t

+ ∇ · (p⊥u) + p⊥(I

−bb) : ∇u + Pn : ∇u − bb : (Pn · ∇u) + 1

2

d

dt
(bb) : Pn

+∇ · q − 1

2
bb : (∇ · Q) = 0. (28)

We have introduced the symmetric third rank heat flux tensor
Q = ∫

f m(v − u)(v − u)(v − u)d3v, and it is related to the
heat flux vector via a trace operation,

q = 1
2 Tr(Q), or qi = 1

2 Qi j j = 1
2 Qji j = 1

2 Qj ji.

It can be easily verified that the sum of Eqs. (27) and (28)
yields the thermal energy Eq. (19). Using the parallel and
perpendicular pressure equations, we can derive the evolution
equation for the CGL entropy Eq. (17),

dsc

dt
= − Pn : σ

2p⊥
− ∇ · q

p⊥
−

(
1

p‖
− 1

p⊥

)[
bb : (Pn · ∇u)

− 1

2

d

dt
(bb) : Pn + 1

2
bb : (∇ · Q)

]
, (29)

where

sc = 3

2
log

p1/3
‖ p2/3

⊥
n5/3

.

On comparing to Eq. (26), it is clear that the increase of
CGL entropy is determined by higher-order moments, namely
the nongyrotropic pressure and the full heat flux tensor,
while the increase of normal fluid entropy depends also on
the gyrotropic pressure and heat flux vector. In the limit of
p‖ = p⊥, Eqs. (29) and (26) reduce to the same equation.
Equation (29) is fully general for nonrelativistic collisionless
plasmas regardless of the closure.

As is evident from Eqs. (26), for ideal MHD where all
third-order or higher moments are cut off and only the
isotropic scalar pressure is included, the entropy of a fluid ele-
ment will be conserved. And similarly for a CGL plasma that
satisfies the double adiabatic equations, the CGL fluid entropy
is conserved according to Eq. (29). We caution the reader that
strictly speaking, the conservation of entropy is valid for con-
tinuous (or “strong”) solutions of the ideal gas or ideal MHD
equations, and may not be valid for discontinuous (or “weak”)
solutions (e.g., Ref. [25]). Indeed, it is well known that shock
waves provide dissipation and increase fluid entropy across
discontinuous surfaces even within the framework of ideal gas
or ideal MHD (e.g., Ref. [26]). However, these simple fluid
models cannot provide the physical mechanisms that explain
the entropy increase and kinetic theory or more sophisticated
fluid theory has to be used.

IV. SIMULATION RESULTS

In this section, we evaluate the fluid entropy in fully kinetic
collisionless particle-in-cell (PIC) simulations, using the code
VPIC. It has been recently reported that kinetic Boltzmann
entropy is conserved in collisionless PIC simulations [9].
Fluid entropy Eq. (3) has also been evaluated in previous PIC
simulations such as Ref. [27], but the detailed mechanisms
underlying the increase in fluid entropy remain obscure. We

will analyze the change of fluid entropy based on the results
presented in the previous section.

We set up a 2D PIC simulation of reconnecting current
sheets in a force-free configuration with magnetic field,

Bx = B0 tanh

[
d

πL
sin

(πz

d

)]
= B0 tanh

[α

π
sin

(πz

αL

)]
,

By = B0

√
1 +

(
Bg

B0

)2

− tanh2

[
d

πL
sin

(πz

d

)]
, Bz = 0.

Here, B0 is the asymptotic in-plane magnetic field, Bg is the
out-of plane guide field, and L is the half thickness of the
current sheet. Another parameter d is introduced as the dis-
tance between two adjacent current sheets, and α represent the
ratio d/L. The electric current is calculated according to the
MHD force-free condition (∇ × B) × B = 0. Both electrons
and ions follow drifting Maxwellian distributions initially, and
we assume the initial density and temperature profiles of both
electrons and ions are uniform. The current is carried by the
electron drift along the magnetic field. A similar setup has
been used in numerous previous simulation studies involving
the interaction of multiple current sheets, e.g., Ref. [28–30].
We choose such a configuration simply because it is a
convenient way of producing a turbulent flow with strong
plasma heating. We set the simulation box Lx = Lz = 50di

with 1024 × 1024 cells, sheet thickness L = 0.5di, guide field
Bg = 0, and distance d = 12.5di so there are 4 current sheets
initially. The simulation is run for �cit = 200, which is about
4 Alfvén crossing times tA = Lx/vA. We employ the plasma
parameters ωpe/�ce = 1, βe = 8π pe/B2

0 = 0.02, and Ti = Te,
where ωpe = (4πn0e2/me)1/2 is the electron plasma frequency
and �ce = eB0/mec is the electron cyclotron frequency. An
artificial ion-to-electron mass ratio of mi/me = 25 is used
to reduce computational cost. We use 200 macroparticles
per cell per species in the simulation, although a simulation
with 1,000 particles per cell is performed, which has verified
the consistency of the results. By the end of the simulation
�cit � 200, the total energy has increased by ∼ 0.4%, in-
dicating excellent energy conservation, which is necessary
for eliminating numerical artifacts. For the case with 1,000
particles per cell, the total energy conservation improves to ∼
0.09%. A double periodic boundary condition is employed in
both the x and z directions, so that the simulation represents a
closed system.

Figure 1 shows snapshots of the isotropic fluid entropy
Eq. (3) in the simulation at different times �cit = 50, 100, and
200. The top panels plot the electron entropy and the bottom
panels the ion entropy. Magnetic field lines are overplotted as
black contours. Note that the absolute value of the entropy is
not important as it depends on how we normalize the pressure
and density, but the difference in entropy is independent of
normalization. At early stage of the simulation, each current
sheet evolves in a relatively independent manner, as illustrated
in the left panels (�cit = 50). Numerous small magnetic
island structures are formed along each current layer. The
current sheets are distorted and interact with each other at
later time, illustrated by the middle panels (�cit = 100). The
figures suggest that the fluid entropy is produced mostly
within the magnetic islands. However, for ions, the entropy
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FIG. 1. Snapshots of isotropic fluid entropy for electrons (top) and ions (bottom) at different simulation times �cit = 50 (left), 100
(middle), and 200 (right). Black contour lines represent magnetic field lines.

seems to be more concentrated near the reconnection X-
lines. Approaching the end of the simulation, the magnetic
islands have experienced multiple merging and coalescence
interactions. The simulation domain becomes rather uniform
with a few big island structures. The images of CGL-form
fluid entropy is very similar to the ones for isotropic fluid
entropy, and therefore are not shown here.

Figure 2 demonstrates the energy budget of the simulation,
normalized to the initial magnetic energy. The top panel shows
the evolution of magnetic energy (dot-dashed black curve)
and plasma energy (solid blue curve for ions and dashed
red curve for electrons). Toward the end of the simulation,
about 70% of the initial magnetic energy is released via
magnetic reconnection. Of the released magnetic energy, the
majority goes to the ion kinetic energy. The second and third
panels show the partition of thermal and bulk flow energy,
respectively, calculated by

Et = Tr(P)/2; Eb = 1
2ρu2.

Again, the solid blue curves represent ions and dashed red
curves electrons. The plasma energization is dominated by the
thermal energy as more than 90% the plasma energy resides in
the thermal energy at the end of the simulation. The bulk flow
energy of electrons is decreasing most of the time during the
simulation because the current is carried by electrons initially.
The ion bulk flow energy increases at the beginning and is
later converted to thermal energy. In the bottom panel, we
plot the rate of change in the ion and electron thermal energy.
All energies in the top three panels are normalized to the
initial magnetic energy. The bottom panel plots the unnor-
malized energy in native simulation unit (energy in mec2, and
time in ω−1

pe ).
We then evaluate the rate of change in fluid entropy using

Eq. (26) integrated over the whole simulation box and the re-
sult is shown in Fig. 3. The rate of change of the fluid entropy
∂s/∂t is plotted in the top panels as solid black lines. The
change of fluid entropy is separated into three parts according

to Eq. (26): convection (−u · ∇s), Pi-D (−� : σ/2p), and
heat flux (−∇ · q/p). They are plotted as dot-dashed blue,
solid green, and dashed red lines. The sum of the three yields
the dashed blue curves in the top panel and it follows the

FIG. 2. Energy budget of the simulation. The top panel shows the
evolution of magnetic energy (dot-dashed black), ion kinetic energy
(solid blue), and electron kinetic energy (dashed red). The second
panel from top shows the ion (solid blue) and electron (dashed
red) thermal energy. The third panel shows the ion (solid blue) and
electron (dashed red) bulk flow energy. All energies in these panels
are normalized to the initial magnetic energy. In the bottom panel, the
rates of change in ion (solid blue) and electron (dashed red) thermal
energy are shown.
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FIG. 3. Rate of change of the fluid entropy for electrons (left panels) and ions (right panels). The solid black lines in the top panels represent
the rate of change of the fluid entropy. The convection term, Pi-D, and heat flux terms are evaluated separately and shown in the bottom panels.
The sum of the three terms is displayed as the dashed blue curves in the top panels.

entropy change curve closely, which verifies the Eq. (26).
Note that all terms are integrated over the entire simulation
box, so that they represent the change in the total extrinsic
entropy of the system.

It is clear from Fig. 3 that the total fluid entropy of the
system is always increasing in our simulation since its rate
of change remains positive. This is similar to the thermal
energy as illustrated in the bottom panel of Fig. 2 though
the two curves do not trace each other exactly. The rate
of entropy change is large between �cit ∼ 30–120 when
magnetic reconnection and island merging are apparent in
the simulation. The overall behaviors of entropy are similar
for both electrons and ions. The convection effect remains
negative for both species. An interesting result is that the Pi-D
and heat flux contributions appear to be comparable with each
other. The physical explanation for this is unclear, but we note
that it is not uncommon for different plasma properties and
energization mechanisms to correlated with one another due
to the presence of coherent structures in turbulence [31,32]. In
our simulation, since the dissipation occurs near reconnection
exhausts and island coalesence regions (as seen from Fig. 1),
both Pi-D and heat flux could trace the evolution of the system
to some degree. For ions, the heat flux contribution is slightly
larger compared with Pi-D. However, at later time of the
simulation, the heat flux contribution becomes small and Pi-D
dominates the entropy increase for both electrons and ions.

Similarly, we evaluate the CGL fluid entropy using
Eq. (29), as shown in Fig. 4. Similar to Fig. 3, the rate of
change of the CGL entropy Sc is displayed in the top panels
as solid black lines. As a comparison, the rate of change of the
isotropic fluid entropy S is shown as dot-dashed lines (which
is the same as the solid black curves in Fig. 3). The result
shows that the two quantities S and Sc differ only slightly,
probably because the anisotropy is not very strong [27]. In
the bottom panels of Fig. 4, we separate Eq. (29) into three
parts. The first part is the convection, which is very close to

the convection term in Fig. 3. The other two parts are denoted
by A and B, where

A = − Pn : σ

2p⊥
− ∇ · q

p⊥
,

B = −
(

1

p‖
− 1

p⊥

)[
bb : (Pn · ∇u) − 1

2

d

dt
(bb) : Pn

+ 1

2
bb : (∇ · Q)

]
.

Term A corresponds to the sum of Pi-D (with nongyrotropic
pressure only) and heat flux, and B is the additional term
unique to the CGL entropy Eq. (29). Note that in calculating
db/dt , we use the Faraday’s law,

∂B
∂t

= c∇ × E,

for convenience since this eliminates the need for evaluating
time derivatives. The sum of the three parts is shown as dashed
blue lines in the top panels, and they agree reasonably well
with the solid black curves, though not as good compared to
Fig. 3. This may be caused by the use of electric field and
higher moments, which tend to be more noisy. One interesting
difference between electrons and ions is that terms A and B
are comparable in size for electrons while term A dominates
for ions. This may be understood from recognizing that Pi-D
in Eq. (26) consists of both gyrotropic and nongyrotropic
pressure while Pi-D in term A consists of the nongyrotropic
pressure only. Since electrons are strongly magnetized, the
electron pressure is almost gyrotropic and thus term A is dom-
inated by the heat flux. As a result, for a weakly anisotropic
pressure (p‖ � p⊥), the reduction of of Pi-D needs to be
compensated by term B, which is dominated by the heat
flux tensor Q. This result demonstrates that even though the
isotropic and CGL fluid entropy have similar values, their
production mechanisms could be different.
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FIG. 4. Rate of change of the CGL fluid entropy for electrons (left panels) and ions (right panels). The solid black lines in the top panels
represent the rate of change of the CGL entropy Sc while the dot-dashed black lines represent the regular fluid entropy S. The convection term
and two other terms (see text for details) are evaluated separately and shown in the bottom panels. The sum of the three terms is displayed as
the dashed blue curves in the top panels.

V. DISCUSSION AND CONCLUSIONS

In this paper, we discuss the evolution of the commonly
used fluid entropy in both isotropic and gyrotropic (or CGL)
forms. The isotropic fluid entropy is conserved for ideal gas
or ideal MHD, and the CGL fluid entropy is conserved within
the CGL plasma model. By simply taking moments of the
Vlasov equation, we show that the fluid entropy of either form
is not necessarily conserved even for an isolated collisionless
system. This result is confirmed by a collisionless PIC sim-
ulation of multiple reconnecting current sheets. As pointed
out by Liang et al. [9], kinetic entropy in a collisionless
PIC simulation is approximately conserved. Clearly, the true
Boltzmann entropy cannot be fully represented by a finite
number of fluid moments. The increasing entropy in our
simulation suggests that the fluid entropy is insufficient to
capture the physical dissipation process. Instead, the change
in fluid entropy may simply imply the breakdown of the ideal
gas equation of state or the CGL double adiabatic equations.

The pressure-strain interaction or Pi-D has been proposed
to capture the dissipation processes in space plasma [5]. We
illustrate in this paper that Pi-D does contribute to the change
of fluid entropy in its isotropic form. However, our result
shows that only the nongyrotropic part of Pi-D contributes to
the CGL-form fluid entropy. Although the heat flux does not
appear in the thermal energy equation, it plays an important
role in the production of fluid entropy. Indeed, our simulation
results suggest that the heat flux is almost equally as important
as Pi-D in terms of increasing fluid entropy. When the CGL
entropy is considered, the role of Pi-D is further reduced and
the heat flux vector and tensor dominate the entropy increase,
especially for electrons. Therefore, it may be expected that
whether Pi-D or heat flux or other higher moments contribute
to fluid entropy change depends on how the entropy itself is
constructed.

Finally, we note that the numerical results presented in this
paper is based on the simulation with 200 macroparticles per
cell per species. While increasing the number of particles to
1 000 does further improve the total energy conservation, the
entropy increase remains qualitatively the same. However, we
do not completely rule out the possibility that the increase of
fluid entropy is due partly to numerical issues. A good way to
clarify this will be to combine our analysis with the evaluation
of kinetic entropy. This will be the goal of a future study.
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APPENDIX: PARALLEL AND PERPENDICULAR WORK

Here, we show the relation between the parallel and
perpendicular work [Eq. (13)] and the pressure [Eqs. (9)
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and (10)]. Using the ideal MHD induction equation, the
parallel and perpendicular pressure equations become

d p‖
dt

+ p‖∇ · u + 2p‖

(
1

B

dB

dt
+ ∇ · u

)
= 0,

d p⊥
dt

+ 2p⊥∇ · u − p⊥

(
1

B

dB

dt
+ ∇ · u

)
= 0.

Since p‖ = 2ε‖ and p⊥ = ε⊥, we find the energy equations

∂ε‖
∂t

+ ∇ · (ε‖u) = −p‖
1

B

dB

dt
− p‖∇ · u,

∂ε⊥
∂t

+ ∇ · (ε⊥u) = p⊥
1

B

dB

dt
.

The term p‖∇ · u on the right-hand side corresponds to the
familiar pdV work as

p‖∇ · u=−p‖
1

n

dn

dt
= p‖

1

V

dV

dt
⇒ p‖dV = p‖V (∇ · u)dt .

Thus, we multiply V dt on the right-hand side of the energy
equations to obtain the work. The magnetic field-related terms
exchange parallel and perpendicular energy, and they provide
additional work as

dWB‖ = p‖V
dB

B
, dWB⊥ = −p⊥V

dB

B
.

Hence, we establish the connection between Eqs. (9), (10),
and (13).
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