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Abstract. Magnetic flux ropes (or magnetic islands) are ubiquitous space plasma structures.
Recent observations suggest that they are often associated with the acceleration of charged
particles, but detailed acceleration mechanisms remain unclear. In this study, we present PIC
simulations studying particle acceleration due to magnetic flux ropes. We consider a simple 2D
configuration of two-magnetic-island coalescence. Some electrons and protons are found to be
accelerated to more than 10 times their initial kinetic energies at the end of the simulation.
We use a particle tracing technique on the high-energy particles to clarify the associated
acceleration mechanisms. We find that reconnection electric field and Fermi-type acceleration
due to magnetic island contraction can explain the particle energy gain, which is consistent
with previous simulation studies. Our results also suggest that electrons are more responsive
to the island contraction mechanism compared to ions. An effective island contraction rate is
derived from the simulation data. Finally we briefly discuss a statistical description of particle
acceleration associated with interacting magnetic flux ropes, and how it can be connected to
simulations.

1. Introduction
Magnetic flux ropes are structures characterized by helical magnetic field lines. They are referred
to as magnetic islands when viewed in 2D, where magnetic field lines form closed-loop-like
structures. Magnetic flux ropes are frequently observed in space plasmas, such as in the Earth’s
magnetosphere [1, 2] and in the solar wind [3–5].

Magnetic reconnection, which is a sudden change in magnetic field configuration, plays a
crucial role in the formation and evolution of magnetic flux ropes. Numerous simulations
suggest that magnetic islands are formed in an elongated reconnecting current sheet. Multiple
magnetic islands may be generated in a 2D turbulent reconnecting flow, and they undergo
dynamic evolution such as coalescence and merging [e.g., 5–8]. Observational studies appear
to support the view that small scale flux ropes in the solar wind are generated by the local
magnetic reconnection and turbulent processes [3–5].

An interesting aspect of magnetic flux ropes is their potential to accelerate charged particles.
Despite Gosling et al. [9] find that direct magnetic reconnection is not an efficient particle
accelerator in the solar wind, recent observations suggest that magnetic flux ropes may be
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responsible for particle acceleration in the heliosphere. Khabarova et al. [5] discuss the crossing
of the heliospheric current sheet (HCS) by interplanetary shocks. They find that atypical
energetic particle events downstream of the shocks can be associated with small-scale magnetic
flux ropes. Khabarova & Zank [10] reexamined the “Gosling event” [9] and 126 related events
over a larger time and more extended spatial range and energies. They found evidence of
an energetic particle population, most likely accelerated by turbulence/magnetic island related
structures generated by the initial reconnection events. In these regions, magnetic flux ropes
undergo dynamic interactions through magnetic reconnection. Particles that are trapped in such
regions can be accelerated more efficiently than in an isolated reconnection exhaust.

Numerical simulations have suggested several mechanisms for particle acceleration. The basic
processes include first order Fermi acceleration due to magnetic island contraction, and direct
acceleration by the reconnection electric field generated during the merging of two adjacent
magnetic islands [11–15]. Zank et al. [16] develop a theoretical particle transport equation that
describes the particle acceleration in a sea of interacting magnetic islands, incorporating the
abovementioned basic acceleration mechanems. le Roux et al. [17] derive a more sophisticated
transport equation from a quasi-linear approach, where the energization is associated with
guiding center drift motions. The two equations discuss the same energization mechanisms but
in terms of field line contraction and guiding center motions. However, both theories need to be
tested against more careful simulations and observations. In return, detailed simulation studies
will enable us to better understand the acceleration processes, and thus guide the development
of more sophisticated transport models.

In this study, we perform fully kinetic particle-in-cell (PIC) simulations of the coalescence of
two magnetic flux ropes. We use a particle tracing technique to study the acceleration of both
electrons and ions. We report some findings regarding the acceleration mechanisms, recognizing
the limitation of a 2D model, and discuss the connection between simulations and a statistical
transport theory.

2. Simulation Model
The simulation uses the VPIC code [18], which solves Maxwell’s equations for electromagnetic
fields and the relativistic equations of motion for particles. The simulation setup is reported
in an earlier work (Du et al., in preparation). The initial configuration contains two magnetic
islands embedded in a reconnecting current sheet, illustrated in the top left panel of Figure
1. A similar setup has also been used in several previous simulation studies [e.g., 19–21]. The
magnetic field is given by

Bx =
B0 sinh(z/L)

cosh(z/L) + ε cos(x/L)
; Bz =

B0 sin(x/L)

cosh(z/L) + ε cos(x/L)
; By =

B0

√
1− ε2

cosh(z/L) + ε cos(x/L)
,

where L is the distance between the two islands, which also determines the system size, and ε
is a measure of the island size. This setup ensures that the initial condition is force free, i.e.,
J×B = (∇×B)×B = 0. The simulation box is set to x ∈ [−2πL, 2πL], z ∈ [−πL, πL].
We set L = 2di and ε = 0.4 in the simulation, where di = c/ωpi is the ion inertial length. A
periodic boundary condition is applied to the x direction, whereas conducting field/reflective
particle boundaries are used in the z direction. We consider only an electron–proton plasma,
and the mass ratio mi/me is set to 25. The initial electron and proton temperatures are uniform
throughout the simulation domain with kTe = kTi = 3.75 × 10−3mec

2. The magnetic field
strength B0 is determined by the ωpe/Ωce value, where ωpe =

√
4πn0e2/me and Ωce = mec/eB0

are the electron plasma frequency and electron gyrofrequency, respectively. We set ωpe/Ωce = 2
in our simulations. The particle number density profile is also uniform initially. The initial
plasma beta is then given by βe = βi = n0kTe/(B

2
0/2) = 0.03. About 400 macro-particles per

cell are used for each species.
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Figure 1. Snapshots at four normalized time, showing the ion number density, on which in-
plane magnetic field lines are superimposed.

3. Results
3.1. Methodology
Figure 1 shows several snapshots of the ion number density on which in-plane magnetic field lines
are superimposed. The general evolution and the energy conversion of the system is addressed
in a previous study (Du et al., 2018, in preparation), so we do not discuss them here. In this
paper, we focus on particle energization using a particle tracing technique. We present a detailed
analysis of tracer particle trajectories and discuss the acceleration mechanisms for both electrons
and ions.

A total of 4 × 108 macro-particles (including both electrons and ions) are used in the
simulation, and we select 2 × 104 particles as tracers during the first run. To save storage
space, the tracer trajectories are not well resolved in time. We then select the highest-energy
tracers and run the simulation a second time to obtain better time-resolved particle trajectories.
The energy selection criteria is Ee ≳ 7.8× 10−2mec

2 for electrons, and Ei ≳ 5.3× 10−2mec
2 for

ions, where Ee and Ei are the kinetic energy of the tracer particles at the end of the simulation.
We find a total of 131 electrons and 86 ions that satisfy the criteria, and obtain their trajectories.

As discussed in Zank et al. [16], the basic particle acceleration mechanisms associated with
flux ropes include island contraction and reconnection electric field. A simple way to model the
island contraction mechanism is by using adiabatic invariants. For a contracting magnetic island,
assuming a compressible process, the conservation of first and second adiabatic invariants, as
well as the magnetic flux yield the rate of change in particle momentum

dp∥

dt
= ηcp∥;

dp⊥
dt

=
1

2
ηcp⊥. (1)

On the other hand, if we assume the coalescence of magnetic islands is an incompressible process,
i.e., the total area of the islands remains the same after coalescence, then the rate of change of



4

1234567890 ‘’“”

The 17th Annual International Astrophysics Conference IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1100 (2018) 012009  doi :10.1088/1742-6596/1100/1/012009

particle momentum becomes

dp∥

dt
= ηmp∥;

dp⊥
dt

= −1

2
ηmp⊥. (2)

Here, ηc and ηm are the associated island contraction rates for the compressible and
incompressible magnetic island contraction cases, respectively. We adopt this simple model
to analyze the simulation data.

3.2. Electron Acceleration
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Figure 2. An example of an electron tracer. Top left: particle kinetic energy vs. time; bottom
left: logarithm of normalized momentum (parallel, perpendicular and total) vs. time; top right:
particle trajectory in the x-z plane; bottom right: particle kinetic energy vs. x-coordinate.

Some examples of electron trajectories are shown in Figures 2–5. To illustrate the acceleration
mechanisms, we plot the kinetic energy vs. time (top left), momentum vs. time (bottom left),
trajectory in the x-z plane (top right), and kinetic energy vs. x-coordinate (bottom right).
Particle trajectories are color-coded by the corresponding kinetic energy. Since we apply a
periodic boundary condition in x direction, a horizontal line appears in the trajectories and
energy vs. time plots (right panels) when a particle crosses the x-boundaries. The momentum
plots include both the parallel and perpendicular momenta, and also the total momentum. We
plot them logarithmically as log(p/p0), where p0 is the momentum (parallel, perpendicular,
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Figure 3. An example of an electron tracer. The format is the same as Figure 2

or total) at the initial time. As discussed below, this helps us understand the acceleration
mechanisms. The momentum plots have been smoothed using a running average.

Figure 2 shows a tracer electron that undergoes acceleration due to magnetic island
contraction. The particle energy increases as it orbits the flux ropes. As seen in the bottom left
panel, both parallel and perpendicular momenta increase until nearly the end of the simulation
when the perpendicular momentum drops. The linear increase in the particle momentum log(p)
indicates that this is a first-order Fermi mechanism (as discussed later).

Figure 3 is another example of first-order Fermi acceleration, although the particle behaves
differently than in the previous case. Here the particle is reflected several times inside the flux
ropes, due to its small parallel momentum. The particle gains energy during the process because
the length of the field lines is shortening.

Besides the island contraction (or Fermi acceleration) mechanism, we also see direct
acceleration by the reconnection electric field. In Figure 4, the particle energy and momentum
show a sudden increase at Ωcit ∼ 75. The bottom right panel shows that the sudden increase
happens when the particle is near the boundary in the x direction. The trajectory also suggests
that the particle is not trapped by the flux ropes before merging, but it is then trapped inside the
single merged island at later time. Since the acceleration happens at the primary reconnection
location, we attribute the main acceleration mechanism to the electric field generated by the
primary reconnection event. Figure 5 is another example of a sudden energy increase at
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Figure 4. An example of an electron tracer. The format is the same as Figure 2

Ωcit ∼ 75. However, the acceleration site is near x = 0, where the island coalescence happens.
Therefore, the reconnection electric field generated during coalescence is likely to be responsible
for the particle energy gain. Since this electric field is in the opposite direction to the electric field
generated by the primary reconnection event (near the x boundary of the simulation domain),
it is called an anti-reconnection electric field in some literature [14, 16]. We also notice that
in both examples that illustrate direct acceleration by reconnection electric fields, the particle
energy continue to increase after the main merging phase. This suggests that the single merged
magnetic island undergoes contraction, which leads to addition Fermi acceleration of particles,
although the effect is not as large as the electric field energization for these two particular
particles.

3.3. Ion Acceleration
Now we consider ion tracers. We find that the basic acceleration mechanisms are still the
same—magnetic island contraction and reconnection electric field. Here we show examples of
ion acceleration in Figures 6–8 in the same format as the previous plots.

In Figure 6, the ion energy increases suddenly at about Ωcit ∼ 55. From the trajectory,
the main acceleration site is near the center of the simulation domain, where island coalescence
occurs. This is consistent with direct acceleration by the anti-reconnetion electric field. The
particle energy continues increasing after merging, due to island contraction.
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Figure 5. An example of an electron tracer. The format is the same as Figure 2

As a second example, in Figure 7, the ion gains energy at about Ωcit ∼ 75, near the location
of primary reconnection. The particle is then trapped in the merged island, and undergo a
reflection while gaining energy. The acceleration after island merging can still be interpreted as
a first-order Fermi process.

Another interesting finding is that the kinetic energy does not necessarily increase after the
main coalescence phase ends. Some of the ion tracers appear to undergo significant deceleration
during later times of the simulation. An example is shown in Figure 8. In this case, the particle
is accelerated to a high energy before Ωcit ∼ 75, which is likely due to the anti-reconnection
electric field. It then experiences a gradual deceleration, and loses about half of its maximum
kinetic energy by the end of the simulation. The deceleration seems to suggest a expanding
magnetic island, which is inconsistent with the examples discussed before, so the mechanism is
still not clear.

4. Discussion and Conclusions
4.1. Differences between Electron and Ion acceleration
We now discuss differences between the electron and ion acceleration. Since ions are much
heavier than electrons, their gyroradii are much larger than those of electrons, especially after
they are energized. As indicated by the tracer trajectories, the ion gyroradii approach scales
comparable to the magnetic island size or the length scale on which the field varies. The large
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Figure 6. An example of an ion tracer. The format is the same as figure 2

gyroradii and gyroperiod may violate the conservation of adiabatic invariants, which may pose a
problem on estimating the acceleration rate from the simple Zank et al. model [16]. We caution
that the current simulation size is relatively small compared to the scale size of magnetic flux
ropes observed in the solar wind. For example, recent observations [22] find that the scale size of
observed small-scale magnetic flux ropes is ∼ 0.001− 0.01AU at a heliocentric distance of 1AU,
which corresponds to ∼ 2×103−2×104di on assuming a proton number density of ni = 10cm−3.
The proton gyroradii could be much smaller compared to the flux rope sizes, and may behave
like electrons. However, the plasma beta in the solar wind is usually larger than the value used
in the simulation, which will result in a larger gyroradius.

A noticeable difference between ion and electron behavior is that ions are mostly accelerated
during the main merging phase. This can be seen in the evolution of the total particle energy of
the system (Figure 9). Electrons, while being accelerated at the merging time, continue to gain
energy after the two islands merge. Since island contraction is the main acceleration mechanism
after merging, we may infer that this mechanism seems to have a bigger impact on electrons
than ions. Also we note that the simulation produces more high-energy electrons than ions,
and the highest energy achieved by an electron tracer (0.153mec

2) is slightly larger than that
achieved by an ion tracer (0.140mec

2). This difference may also be a consequence of the large
ion gyroradii or the small simulation size. Interestingly, our previous study (Du et al., 2018, in
preparation) shows that the macroscopic behavior is not much different in larger-size simulations
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Figure 7. An example of an ion tracer. The format is the same as figure 2

(up to ∼ 100di). A particle tracing study with larger simulations may be helpful.
Since magnetic island contraction is responsible for the particle acceleration during the later

half of the simulation, we attempt to obtain an acceleration rate from the simulation data. We
adopt the simple Zank et al. model [16], i.e., equations 1 and 2. Upon defining momentum
logarithms ξ∥ = log(p∥/p∥,0) and ξ⊥ = log(p⊥/p⊥,0) where p∗,0 (∗ =∥,⊥) are suitable constants,
the equations can be rewritten in terms of new variables as

dξ∥

dt
= ηc;

dξ⊥
dt

=
1

2
ηc (3)

for a compressible process, and

dξ∥

dt
= ηm,

dξ⊥
dt

= −1

2
ηm (4)

for an incompressible process. These expressions show that the slope of a log(p) vs. t curve gives
an acceleration rate (or island contraction/merging rate). We observe from the log(p) vs. t plots
that either the parallel or perpendicular momentum often includes large fluctuations. Therefore,
we consider only the total momentum evolution. By transforming the variables ξ∥ and ξ⊥ to a
total momentum logarithm ξ = p/p0 and a pitch angle cosine µ = p∥/p, it is straightforward to
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Figure 8. An example of an ion tracer. The format is the same as figure 2

convert equations 3 and 4 to

dξ

dt
=

1

2
ηc(1 + µ2);

dµ

dt
=

1

2
ηcµ(1− µ2); (5)

dξ

dt
=

1

2
ηm(3µ2 − 1);

dµ

dt
=

3

2
ηmµ(1− µ2), (6)

for compressible and incompressible processes, respectively. Assuming the contraction/merging
rates ηc/m are independent of ξ and µ, we can obtain the rate of total momentum change after
averaging the above equations over particle pitch angles. The resulting equations are formally
written as

dξ

dt
= η̃c/m (7)

where η̃c/m is an effective contraction/merging rate that has absorbed the average of the pitch
angle part of Equations (5) and (6). Note that in both compressible and incompressible cases,
the changing rate of pitch angle cosine dµ/dt has the same sign as µ itself. This means that
the pitch angle will increase in time for positive µ, and decrease for negative µ, aligning particle
motions with the magnetic field, which may lead to an anisotropic particle distribution. However,
suppose the particle distribution remains isotropic for some reasons (for example, due to particle
scattering by background turbulence or self-generated waves), one concludes that η̃m = 0 because
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Figure 2. The dotted blue line indicates the
starting time of the fit Ωcit = 90, and the
dashed blue line is the best fit to the solid
blue curve (total momentum).

the integration of 3µ2 − 1 is zero in Equation 6. More generally, we can expand the particle
distribution in terms of Legendre polynomials [16]. Since the second-order Legendre polynomial
is P2(x) = (3x2 − 1)/2, the only contributing term to the zeroth-order distribution function will
be the second-order term. On the other hand, η̃c always has the same sign with ηc regardless
of the particle distribution, as suggested by equation 5. Whether it is positive or negative
depends on the dynamics of the flux rope: it may either be contracting or expanding. In
this sense, one may call the compressible energization (ηc effect) first-order Fermi acceleration,
and the incompressible energization (ηm effect) second-order Fermi acceleration or stochastic
acceleration. In reality, one may expect both compressible and incompressible effects contribute
to the acceleration of particles. We simply use Equation 7 in our analysis, and denote the
acceleration rate as η̃c, though it may be a combination of the ηc and ηm effects.

As discussed in the previous section, at early simulation times, particle acceleration is strongly
affected by the reconnection electric field, so we apply a linear fit to log(p)-t plots from the later
part of the simulation, Ωcit = 90 to Ωcit = 200. Figure 10 illustrates our fitting procedure, where
the same tracer electron as in Figure 2 is plotted. The fitting procedure is applied to all tracer
electrons and ions, and a slope is obtained for each tracer. In Figure 11, we plot the pitch angle
cosine at Ωcit = 90, denoted as µ1, against the acceleration rate η̃c. Electron and ion tracers
are plotted separately in the left and right panel. A mean value and a standard deviation are
calculated and included in the figure. The fitting results show that electrons experience clear
acceleration during the considered time interval, while ions are less strongly accelerated. This
is consistent with Figure 9 and our previous discussion. Note that the fitting is only applied
to the highest energy tracer particles, and the selection criteria is higher for electrons, so we
caution about the potential bias in the analysis. One may also notice that electron pitch angles
are strongly clustered near µ = −1. This is mostly due to the initial setup of the simulation,
because the initial force-free condition is achieved by introducing a particle drift motion along
the magnetic field.

Tracer trajectories show that all the high energy electrons are trapped within the flux rope,
although some of them are not trapped initially (such as the example shown in Figure 2). The
trapping and escape of particles is very important for the acceleration process. For a particle to
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Figure 11. Scatter plots of acceleration rates for electrons (left) and ions (right). µ1 is the
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Figure 12. The trajectory of an ion tracer that escaped a flux rope.

gain energy in a contracting magnetic island via field line shortening, it needs to be trapped in
the island. Escape is important for the formation of a power law energy spectrum by stochastic
acceleration. In our simulation, high-energy electrons do not escape once they are trapped.
This is likely due to the 2D nature of the simulation, as indicated by previous simulations [23].
Despite the large ion gyroradii, most of the ion tracers are also trapped within the flux rope.
We find one case where an initially trapped ion seems to be scattered out of the flux rope after
merging (shown in Figure 12). However, the escape mechanism is still not clear. We will return
to this point later when we discuss the associated transport formalisms.

4.2. A Statistical Description of Particle Acceleration
In this section, we discuss briefly a statistical description of particle acceleration associated with
multiple magnetic flux ropes. Similar to our previous analysis, we consider the island contraction
mechanism only, and use the simple relation (Equation (7)) to estimate the particle momentum
rate of change. The problem of stochastic acceleration can be treated as a random walk in
momentum space. The classical approach to study the problem is to use the Fokker–Planck
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(FP) equation
∂f(ξ, t)

∂t
= −a∂f(ξ, t)

∂ξ
+D

∂2f(ξ, t)

∂ξ2
. (8)

By using the FP equation, we essentially assume that the random walk is a Markov process, and
the steps have a finite mean and variance, so that the coefficients are given by a =< ∆ξ > /∆t
and D =< ∆ξ2 > /2∆t, where < ∆ξ > and < ∆ξ2 > are the mean and variance of the
momentum increment, and ∆t is the time increment. Using equation (7), we can estimate the
coefficients as

a ≃< ηc >; D ≃< η2c > τ (9)

where < ηc > and < η2c > is the mean and variance of the acceleration rate, and τ is a
characteristic time scale.

A transport equation of the FP type is applied to the flux rope acceleration problem by
Bian & Kontar [24]. A more general approach is the so called continuous time random walk
(CTRW). Depending on the form of the distribution of the acceleration rate and waiting time,
the CTRW approach yields different forms of the transport equation (see, for example, Metzler
& Klafter [25] for a comprehensive review). In the simplest case, the classical FP equation
can be recovered, while in some other circumstances, a fractional differential equation (FDE)
is more suitable. The idea of CTRW is that the step size (or jump length) and the waiting
time between two steps (jumps) are drawn from a joint probability density function (pdf). If
we further assume that the jump length is independent of the waiting time, each following a pdf
λ(ξ) and ψ(t), then the governing equation for the particle distribution function can be written
as a modified Chapman–Kolmogorov equation,

f(ξ, t) =

∫ ∞

−∞
dξ′

∫ t

0
dt′f(ξ′, t′)λ(ξ − ξ′)ψ(t− t′) + f0(ξ)

∫ ∞

t
dt′ψ(t′). (10)

It is often more convenient to work with the Fourier and Laplace transformed equation,

f̂(k, u) =
1− ψ̂(u)

u

f̂0(k)

1− λ̂(k)ψ̂(u)
, (11)

where we introduce a Fourier transform ξ → k, and a Laplace transform t→ u [25]. Considering
only the island contraction mechanism, from Equation (7), the momentum change during a given
time interval ∆t is approximately

∆ξ = ηc∆t, (12)

where we have dropped the tilde over ηc for notational simplicity. Suppose the effective
contraction rate ηc has a pdf g(ηc), then the jump length pdf is connected to ηc according
to

λ(∆ξ)d∆ξ = g(ηc)dηc. (13)

On combining the two equations above,

λ(ξ) =
1

∆t
g

(
ξ

∆t

)
. (14)

Equation (14) provides a direct relation between the jump length pdf required for a CTRW
process and the island contraction rate.

From our discussion, one sees that a theoretical description of stochastic acceleration is based
on the distribution of acceleration rates g(ηc). Our particle tracing technique provides a tool
for obtaining such information, as the effective contraction rate η̃c associated with a flux rope
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can be obtained from tracer particles. Currently we don’t have any statistical information of
magnetic islands in our current simulation, because there is only one coalescence event. However,
we expect that in a large-scale multiple island simulation, a similar technique may be useful.
Besides the acceleration rate, the waiting time pdf ψ(t) is also important for determining the
shape of the transport formalism in CTRW. Another important parameter is the acceleration
time ∆t in Equation (14), which may be interpreted as the characteristic trapping time of a
particle by a contracting flux rope. Information about the waiting time and trapping time will
be difficult to obtain, since in the current simulation most energetic particles are very efficiently
trapped by flux ropes and rarely escape. This is where 3D vs. 2D simulations may be important.
A future study of the trapping and escape mechanism will be important.

In summary, we carried out a 2D PIC simulation of the coalescence of two magnetic flux ropes.
The analysis of tracer particle trajectories shows that the basic acceleration mechanisms are the
reconnection electric field and magnetic island contraction. The primary particle acceleration
mechanism is magnetic island contraction at late times. However, the reconnection or anti-
reconnection electric field is important at early times when the islands coalescence happens,
and it may contribute to most of the ion energy increase and a large portion of the electron
energy increase. The island contraction mechanism seems to be more important for electrons
than for ions, but this conclusion may depend on parameters such as the island size distribution
and in terms of simulations, the box size. Effective island contraction rates are obtained from
tracer particle data. Although we are not able to derive a full particle transport equation from
the current simulation, we expect that the particle tracing technique will be useful for future
theoretical developments of the transport formalism.
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